These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 39141240)

  • 21. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA.
    Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C
    Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.
    Schwessinger R; Suciu MC; McGowan SJ; Telenius J; Taylor S; Higgs DR; Hughes JR
    Genome Res; 2017 Oct; 27(10):1730-1742. PubMed ID: 28904015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of peak callers used for DNase-Seq data.
    Koohy H; Down TA; Spivakov M; Hubbard T
    PLoS One; 2014; 9(5):e96303. PubMed ID: 24810143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data.
    Schultheis H; Bentsen M; Heger V; Looso M
    Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
    Cazares TA; Rizvi FW; Iyer B; Chen X; Kotliar M; Bejjani AT; Wayman JA; Donmez O; Wronowski B; Parameswaran S; Kottyan LC; Barski A; Weirauch MT; Prasath VBS; Miraldi ER
    PLoS Comput Biol; 2023 Jan; 19(1):e1010863. PubMed ID: 36719906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells.
    Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K
    Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irf1- and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation.
    Chu YB; Li J; Jia P; Cui J; Zhang R; Kang X; Lv M; Zhang S
    Int Immunopharmacol; 2021 Oct; 99():108072. PubMed ID: 34426111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A practical guide for DNase-seq data analysis: from data management to common applications.
    Liu Y; Fu L; Kaufmann K; Chen D; Chen M
    Brief Bioinform; 2019 Sep; 20(5):1865-1877. PubMed ID: 30010713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
    Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA
    Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic footprinting.
    Vierstra J; Stamatoyannopoulos JA
    Nat Methods; 2016 Mar; 13(3):213-21. PubMed ID: 26914205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of transcription factor binding sites using ATAC-seq.
    Li Z; Schulz MH; Look T; Begemann M; Zenke M; Costa IG
    Genome Biol; 2019 Feb; 20(1):45. PubMed ID: 30808370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A common pattern of DNase I footprinting throughout the human mtDNA unveils clues for a chromatin-like organization.
    Blumberg A; Danko CG; Kundaje A; Mishmar D
    Genome Res; 2018 Aug; 28(8):1158-1168. PubMed ID: 30002158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate prediction of inducible transcription factor binding intensities in vivo.
    Guertin MJ; Martins AL; Siepel A; Lis JT
    PLoS Genet; 2012; 8(3):e1002610. PubMed ID: 22479205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATAC-seq with unique molecular identifiers improves quantification and footprinting.
    Zhu T; Liao K; Zhou R; Xia C; Xie W
    Commun Biol; 2020 Nov; 3(1):675. PubMed ID: 33188264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GeF-seq: A Simple Procedure for Base-Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Fukamachi K; Ishikawa S; Oshima T
    Methods Mol Biol; 2024; 2819():39-53. PubMed ID: 39028501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of DNase-seq footprint identification strategies.
    Barozzi I; Bora P; Morelli MJ
    Front Genet; 2014; 5():278. PubMed ID: 25177346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNase I sensitivity QTLs are a major determinant of human expression variation.
    Degner JF; Pai AA; Pique-Regi R; Veyrieras JB; Gaffney DJ; Pickrell JK; De Leon S; Michelini K; Lewellen N; Crawford GE; Stephens M; Gilad Y; Pritchard JK
    Nature; 2012 Feb; 482(7385):390-4. PubMed ID: 22307276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.