These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39141703)
1. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Barker SJ; Thayer MB; Kim C; Tatarakis D; Simon MJ; Dial R; Nilewski L; Wells RC; Zhou Y; Afetian M; Akkapeddi P; Chappell A; Chew KS; Chow J; Clemens A; Discenza CB; Dugas JC; Dwyer C; Earr T; Ha C; Ho YS; Huynh D; Lozano EI; Jayaraman S; Kwan W; Mahon C; Pizzo M; Robles-Colmenares Y; Roche E; Sanders L; Stergioulis A; Tong R; Tran H; Zuchero Y; Estrada AA; Gadkar K; Koth CMM; Sanchez PE; Thorne RG; Watts RJ; Sandmann T; Kane LA; Rigo F; Dennis MS; Lewcock JW; DeVos SL Sci Transl Med; 2024 Aug; 16(760):eadi2245. PubMed ID: 39141703 [TBL] [Abstract][Full Text] [Related]
2. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. Monine M; Norris D; Wang Y; Nestorov I J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):639-654. PubMed ID: 33991294 [TBL] [Abstract][Full Text] [Related]
3. A single-cell map of antisense oligonucleotide activity in the brain. Mortberg MA; Gentile JE; Nadaf NM; Vanderburg C; Simmons S; Dubinsky D; Slamin A; Maldonado S; Petersen CL; Jones N; Kordasiewicz HB; Zhao HT; Vallabh SM; Minikel EV Nucleic Acids Res; 2023 Aug; 51(14):7109-7124. PubMed ID: 37188501 [TBL] [Abstract][Full Text] [Related]
4. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Jafar-Nejad P; Powers B; Soriano A; Zhao H; Norris DA; Matson J; DeBrosse-Serra B; Watson J; Narayanan P; Chun SJ; Mazur C; Kordasiewicz H; Swayze EE; Rigo F Nucleic Acids Res; 2021 Jan; 49(2):657-673. PubMed ID: 33367834 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Yu YJ; Atwal JK; Zhang Y; Tong RK; Wildsmith KR; Tan C; Bien-Ly N; Hersom M; Maloney JA; Meilandt WJ; Bumbaca D; Gadkar K; Hoyte K; Luk W; Lu Y; Ernst JA; Scearce-Levie K; Couch JA; Dennis MS; Watts RJ Sci Transl Med; 2014 Nov; 6(261):261ra154. PubMed ID: 25378646 [TBL] [Abstract][Full Text] [Related]
6. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Hung G; Xiao X; Peralta R; Bhattacharjee G; Murray S; Norris D; Guo S; Monia BP Nucleic Acid Ther; 2013 Dec; 23(6):369-78. PubMed ID: 24161045 [TBL] [Abstract][Full Text] [Related]
7. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Yeoh YQ; Amin A; Cuic B; Tomas D; Turner BJ; Shabanpoor F Biomed Pharmacother; 2024 Jun; 175():116737. PubMed ID: 38749176 [TBL] [Abstract][Full Text] [Related]
8. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Min HS; Kim HJ; Naito M; Ogura S; Toh K; Hayashi K; Kim BS; Fukushima S; Anraku Y; Miyata K; Kataoka K Angew Chem Int Ed Engl; 2020 May; 59(21):8173-8180. PubMed ID: 31995252 [TBL] [Abstract][Full Text] [Related]
9. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. Stocki P; Szary J; Rasmussen CLM; Demydchuk M; Northall L; Logan DB; Gauhar A; Thei L; Moos T; Walsh FS; Rutkowski JL FASEB J; 2021 Feb; 35(2):e21172. PubMed ID: 33241587 [TBL] [Abstract][Full Text] [Related]
10. VHHs as tools for therapeutic protein delivery to the central nervous system. Wouters Y; Jaspers T; Rué L; Serneels L; De Strooper B; Dewilde M Fluids Barriers CNS; 2022 Oct; 19(1):79. PubMed ID: 36192747 [TBL] [Abstract][Full Text] [Related]
11. Blood-Brain Barrier Transport, Plasma Pharmacokinetics, and Neuropathology Following Chronic Treatment of the Rhesus Monkey with a Brain Penetrating Humanized Monoclonal Antibody Against the Human Transferrin Receptor. Pardridge WM; Boado RJ; Patrick DJ; Ka-Wai Hui E; Lu JZ Mol Pharm; 2018 Nov; 15(11):5207-5216. PubMed ID: 30226787 [TBL] [Abstract][Full Text] [Related]
12. Angubindin-1 opens the blood-brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system. Zeniya S; Kuwahara H; Daizo K; Watari A; Kondoh M; Yoshida-Tanaka K; Kaburagi H; Asada K; Nagata T; Nagahama M; Yagi K; Yokota T J Control Release; 2018 Aug; 283():126-134. PubMed ID: 29753959 [TBL] [Abstract][Full Text] [Related]
13. Intrathecal Delivery of Antisense Oligonucleotides in the Rat Central Nervous System. Chen Y; Mazur C; Luo Y; Sun L; Zhang M; McCampbell A; Tomassy GS J Vis Exp; 2019 Oct; (152):. PubMed ID: 31736489 [TBL] [Abstract][Full Text] [Related]
14. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Passini MA; Bu J; Richards AM; Kinnecom C; Sardi SP; Stanek LM; Hua Y; Rigo F; Matson J; Hung G; Kaye EM; Shihabuddin LS; Krainer AR; Bennett CF; Cheng SH Sci Transl Med; 2011 Mar; 3(72):72ra18. PubMed ID: 21368223 [TBL] [Abstract][Full Text] [Related]
15. Delivery of mutant huntingtin-lowering antisense oligonucleotides to the brain by intranasally administered apolipoprotein A-I nanodisks. Aly AE; Caron NS; Black HF; Schmidt ME; Anderson C; Ko S; Baddeley HJE; Anderson L; Casal LL; Rahavi RSM; Martin DDO; Hayden MR J Control Release; 2023 Aug; 360():913-927. PubMed ID: 37468110 [TBL] [Abstract][Full Text] [Related]
16. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. Mazur C; Powers B; Zasadny K; Sullivan JM; Dimant H; Kamme F; Hesterman J; Matson J; Oestergaard M; Seaman M; Holt RW; Qutaish M; Polyak I; Coelho R; Gottumukkala V; Gaut CM; Berridge M; Albargothy NJ; Kelly L; Carare RO; Hoppin J; Kordasiewicz H; Swayze EE; Verma A JCI Insight; 2019 Oct; 4(20):. PubMed ID: 31619586 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro. Iwashita S; Shoji T; Koizumi M Methods Mol Biol; 2020; 2176():155-161. PubMed ID: 32865789 [TBL] [Abstract][Full Text] [Related]
18. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. Sullivan JM; Mazur C; Wolf DA; Horky L; Currier N; Fitzsimmons B; Hesterman J; Pauplis R; Haller S; Powers B; Tayefeh L; DeBrosse-Serra B; Hoppin J; Kordasiewicz H; Swayze EE; Verma A J Transl Med; 2020 Aug; 18(1):309. PubMed ID: 32771027 [TBL] [Abstract][Full Text] [Related]
19. Targeting the transferrin receptor for brain drug delivery. Johnsen KB; Burkhart A; Thomsen LB; Andresen TL; Moos T Prog Neurobiol; 2019 Oct; 181():101665. PubMed ID: 31376426 [TBL] [Abstract][Full Text] [Related]