These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 39141735)
21. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Schneider K; Gollan U; Dröttboom M; Selsemeier-Voigt S; Müller A Eur J Biochem; 1997 Mar; 244(3):789-800. PubMed ID: 9108249 [TBL] [Abstract][Full Text] [Related]
22. Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus. Sicking C; Brusch M; Lindackers A; Riedel KU; Schubert B; Isakovic N; Krall C; Klipp W; Drepper T; Schneider K; Masepohl B J Bacteriol; 2005 Jan; 187(1):92-8. PubMed ID: 15601692 [TBL] [Abstract][Full Text] [Related]
23. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Tichi MA; Tabita FR Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022 [TBL] [Abstract][Full Text] [Related]
24. Electrocatalytic CO Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886 [TBL] [Abstract][Full Text] [Related]
25. Rhodobacter capsulatus AnfA is essential for production of Fe-nitrogenase proteins but dispensable for cofactor biosynthesis and electron supply. Demtröder L; Pfänder Y; Masepohl B Microbiologyopen; 2020 Jun; 9(6):1234-1246. PubMed ID: 32207246 [TBL] [Abstract][Full Text] [Related]
26. Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. Drepper T; Groß S; Yakunin AF; Hallenbeck PC; Masepohl B; Klipp W Microbiology (Reading); 2003 Aug; 149(Pt 8):2203-2212. PubMed ID: 12904560 [TBL] [Abstract][Full Text] [Related]
27. Differential reduction of CO₂ by molybdenum and vanadium nitrogenases. Rebelein JG; Hu Y; Ribbe MW Angew Chem Int Ed Engl; 2014 Oct; 53(43):11543-6. PubMed ID: 25205285 [TBL] [Abstract][Full Text] [Related]
28. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Fixen KR; Zheng Y; Harris DF; Shaw S; Yang ZY; Dean DR; Seefeldt LC; Harwood CS Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10163-7. PubMed ID: 27551090 [TBL] [Abstract][Full Text] [Related]
29. Expression of V-nitrogenase and Fe-nitrogenase in Chanderban M; Hill CA; Dhamad AE; Lessner DJ Appl Environ Microbiol; 2023 Sep; 89(9):e0103323. PubMed ID: 37695043 [TBL] [Abstract][Full Text] [Related]
30. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Dilworth MJ; Eldridge ME; Eady RR Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785 [TBL] [Abstract][Full Text] [Related]
31. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N Harris DF; Lukoyanov DA; Kallas H; Trncik C; Yang ZY; Compton P; Kelleher N; Einsle O; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2019 Jul; 58(30):3293-3301. PubMed ID: 31283201 [TBL] [Abstract][Full Text] [Related]
32. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Liu J; Kelley MS; Wu W; Banerjee A; Douvalis AP; Wu J; Zhang Y; Schatz GC; Kanatzidis MG Proc Natl Acad Sci U S A; 2016 May; 113(20):5530-5. PubMed ID: 27140630 [TBL] [Abstract][Full Text] [Related]
33. Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase. Seefeldt LC; Rasche ME; Ensign SA Biochemistry; 1995 Apr; 34(16):5382-9. PubMed ID: 7727396 [TBL] [Abstract][Full Text] [Related]
34. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Jasniewski AJ; Lee CC; Ribbe MW; Hu Y Chem Rev; 2020 Jun; 120(12):5107-5157. PubMed ID: 32129988 [TBL] [Abstract][Full Text] [Related]
35. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T; Leimkühler S FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888 [TBL] [Abstract][Full Text] [Related]
36. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Jochum T; Fastnacht A; Trumbore SE; Popp J; Frosch T Anal Chem; 2017 Jan; 89(2):1117-1122. PubMed ID: 28043118 [TBL] [Abstract][Full Text] [Related]
37. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Miller RW; Eady RR Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922 [TBL] [Abstract][Full Text] [Related]
38. Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification. Luo YW; Shi D; Kranz SA; Hopkinson BM; Hong H; Shen R; Zhang F Nat Commun; 2019 Apr; 10(1):1521. PubMed ID: 30944323 [TBL] [Abstract][Full Text] [Related]
39. Purification and properties of a nif-specific flavodoxin from the photosynthetic bacterium Rhodobacter capsulatus. Yakunin AF; Gennaro G; Hallenbeck PC J Bacteriol; 1993 Nov; 175(21):6775-80. PubMed ID: 8226618 [TBL] [Abstract][Full Text] [Related]
40. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Schmehl M; Jahn A; Meyer zu Vilsendorf A; Hennecke S; Masepohl B; Schuppler M; Marxer M; Oelze J; Klipp W Mol Gen Genet; 1993 Dec; 241(5-6):602-15. PubMed ID: 8264535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]