These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 39141794)
1. Fokker-Planck modeling of the stochastic dynamics of a Rijke tube. Lee M; Gupta V; Li LKB Chaos; 2024 Aug; 34(8):. PubMed ID: 39141794 [TBL] [Abstract][Full Text] [Related]
2. Input-output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data. Lee M; Guan Y; Gupta V; Li LKB Phys Rev E; 2020 Jan; 101(1-1):013102. PubMed ID: 32069669 [TBL] [Abstract][Full Text] [Related]
3. Stochastic bifurcations in a prototypical thermoacoustic system. Gopalakrishnan EA; Tony J; Sreelekha E; Sujith RI Phys Rev E; 2016 Aug; 94(2-1):022203. PubMed ID: 27627294 [TBL] [Abstract][Full Text] [Related]
4. Change of criticality in a prototypical thermoacoustic system. Etikyala S; Sujith RI Chaos; 2017 Feb; 27(2):023106. PubMed ID: 28249404 [TBL] [Abstract][Full Text] [Related]
5. Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation. Boujo E; Noiray N Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160894. PubMed ID: 28484333 [TBL] [Abstract][Full Text] [Related]
7. Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. Li X; Zhao D; Shi B J Acoust Soc Am; 2019 Feb; 145(2):692. PubMed ID: 30823803 [TBL] [Abstract][Full Text] [Related]
8. Delay-induced stochastic bifurcations in a bistable system under white noise. Sun Z; Fu J; Xiao Y; Xu W Chaos; 2015 Aug; 25(8):083102. PubMed ID: 26328553 [TBL] [Abstract][Full Text] [Related]
9. Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation. Gaudreault M; Drolet F; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056214. PubMed ID: 23004850 [TBL] [Abstract][Full Text] [Related]
10. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
11. Coherence resonance in a thermoacoustic system. Kabiraj L; Steinert R; Saurabh A; Paschereit CO Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042909. PubMed ID: 26565306 [TBL] [Abstract][Full Text] [Related]
12. Stochastic dynamo model for subcritical transition. Fedotov S; Bashkirtseva I; Ryashko L Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976 [TBL] [Abstract][Full Text] [Related]
13. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Maoutsa D; Reich S; Opper M Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573 [TBL] [Abstract][Full Text] [Related]
14. Stochastic Fokker-Planck equation in random environments. Bressloff PC Phys Rev E; 2016 Oct; 94(4-1):042129. PubMed ID: 27841623 [TBL] [Abstract][Full Text] [Related]
15. Fokker-Planck dynamics of the El Niño-Southern Oscillation. An SI; Kim SK; Timmermann A Sci Rep; 2020 Oct; 10(1):16282. PubMed ID: 33004972 [TBL] [Abstract][Full Text] [Related]
16. Macroscopic limit cycle via pure noise-induced phase transitions. Kawai R; Sailer X; Schimansky-Geier L; Van den Broeck C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051104. PubMed ID: 15244805 [TBL] [Abstract][Full Text] [Related]
17. Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame. Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S Chaos; 2021 Mar; 31(3):033117. PubMed ID: 33810714 [TBL] [Abstract][Full Text] [Related]
18. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback. Gaudreault M; Drolet F; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051124. PubMed ID: 21230454 [TBL] [Abstract][Full Text] [Related]
19. Fokker-Planck equation for bistable potential in the optimized expansion. Okopińska A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):062101. PubMed ID: 12188767 [TBL] [Abstract][Full Text] [Related]
20. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]