These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39141897)
1. Ion Correlation-Driven Hysteretic Adhesion and Repulsion between Opposing Polyelectrolyte Brushes. Duan C; Wang R ACS Macro Lett; 2024 Sep; 13(9):1127-1132. PubMed ID: 39141897 [TBL] [Abstract][Full Text] [Related]
2. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory. Sin JS J Chem Phys; 2022 Aug; 157(8):084902. PubMed ID: 36050036 [TBL] [Abstract][Full Text] [Related]
3. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559 [TBL] [Abstract][Full Text] [Related]
4. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Yu J; Jackson NE; Xu X; Brettmann BK; Ruths M; de Pablo JJ; Tirrell M Sci Adv; 2017 Dec; 3(12):eaao1497. PubMed ID: 29226245 [TBL] [Abstract][Full Text] [Related]
5. Lubrication by Polyelectrolyte Brushes. Zhulina EB; Rubinstein M Macromolecules; 2014 Aug; 47(16):5825-5838. PubMed ID: 25180021 [TBL] [Abstract][Full Text] [Related]
6. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Etha SA; Sivasankar VS; Sachar HS; Das S Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082 [TBL] [Abstract][Full Text] [Related]
7. Unveiling the Role of Electrostatic Forces on Attraction between Opposing Polyelectrolyte Brushes. Prusty D; Gallegos A; Wu J Langmuir; 2024 Jan; 40(4):2064-2078. PubMed ID: 38236763 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Raspberry-like Nanoparticles via Surface Grafting of Positively Charged Polyelectrolyte Brushes: Colloidal Stability and Surface Properties. Aldakkan BS; Chalmpes N; Qi G; Hammami MA; Kanj MY; Giannelis EP Langmuir; 2024 Mar; 40(11):5837-5849. PubMed ID: 38457691 [TBL] [Abstract][Full Text] [Related]
9. Compression of polyelectrolyte brushes in a salt-free theta solvent. Matsen MW Eur Phys J E Soft Matter; 2011 May; 34(5):45. PubMed ID: 21562969 [TBL] [Abstract][Full Text] [Related]
10. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. Sachar HS; Sivasankar VS; Das S Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913 [TBL] [Abstract][Full Text] [Related]
11. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes. Liberelle B; Giasson S Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926 [TBL] [Abstract][Full Text] [Related]
12. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces. Sirchabesan M; Giasson S Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369 [TBL] [Abstract][Full Text] [Related]
13. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Hao QH; Xia G; Tan HG; Chen EQ; Yang S Phys Chem Chem Phys; 2018 Nov; 20(41):26542-26551. PubMed ID: 30306970 [TBL] [Abstract][Full Text] [Related]
14. Behavior of Weak Polyelectrolyte Brushes in Mixed Salt Solutions. Willott JD; Murdoch TJ; Leermakers FAM; de Vos WM Macromolecules; 2018 Feb; 51(3):1198-1206. PubMed ID: 29472729 [TBL] [Abstract][Full Text] [Related]
15. Swelling and shrinking of two opposing polyelectrolyte brushes. Duan M; Chen G Phys Rev E; 2023 Feb; 107(2-1):024502. PubMed ID: 36932574 [TBL] [Abstract][Full Text] [Related]
16. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions. Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365 [TBL] [Abstract][Full Text] [Related]
17. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. Riley JK; Matyjaszewski K; Tilton RD J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792 [TBL] [Abstract][Full Text] [Related]
18. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective. Xu X; Billing M; Ruths M; Klok HA; Yu J Chem Asian J; 2018 Nov; 13(22):3411-3436. PubMed ID: 30080310 [TBL] [Abstract][Full Text] [Related]
19. Comparing Solvophobic and Multivalent Induced Collapse in Polyelectrolyte Brushes. Jackson NE; Brettmann BK; Vishwanath V; Tirrell M; de Pablo JJ ACS Macro Lett; 2017 Feb; 6(2):155-160. PubMed ID: 35632885 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory. Feuz L; Leermakers FA; Textor M; Borisov O Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]