These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39142303)

  • 1. Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry.
    Khodaei A; Moradi F; Oresegun A; Zubair HT; Bradley DA; Ibrahim SA; Abdul-Rashid HA
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39142303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of polarization in the LUTDavis model for optical Monte Carlo simulation in radiation detectors.
    Trigila C; Roncali E
    Phys Med Biol; 2021 Oct; 66(21):. PubMed ID: 34624869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy.
    Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H
    Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations support non-Cerenkov radioluminescence production in tissue.
    Ackerman NL; Boschi F; Spinelli AE
    J Biomed Opt; 2017 Aug; 22(8):1-11. PubMed ID: 28819962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying key surface parameters for optical photon transport in GEANT4/GATE simulations.
    Nilsson J; Cuplov V; Isaksson M
    Appl Radiat Isot; 2015 Sep; 103():15-24. PubMed ID: 26046519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain.
    Verleker AP; Shaffer M; Fang Q; Choi MR; Clare S; Stantz KM
    Appl Opt; 2016 Dec; 55(34):9875-9888. PubMed ID: 27958483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of optical transport effects on EPID dosimetry using Geant4.
    Blake SJ; Vial P; Holloway L; Greer PB; McNamara AL; Kuncic Z
    Med Phys; 2013 Apr; 40(4):041708. PubMed ID: 23556878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation.
    Yabe T; Sasano M; Hirano Y; Toshito T; Akagi T; Yamashita T; Hayashi M; Azuma T; Sakamoto Y; Komori M; Yamamoto S
    Phys Med Biol; 2018 Jun; 63(12):125019. PubMed ID: 29923503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F; Wulff J; Kapsch RP; Zink K
    Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radioluminescence from Tc-99m in glass predicts local dose.
    Ackerman NL; Boschi F; Spinelli AE
    Phys Med; 2017 Oct; 42():112-115. PubMed ID: 29173903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.
    Jang KW; Yagi T; Pyeon CH; Yoo WJ; Shin SH; Jeong C; Min BJ; Shin D; Misawa T; Lee B
    J Biomed Opt; 2013 Feb; 18(2):27001. PubMed ID: 23377008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near high-Z media exposed to kilovolt and 60Co photons.
    Verhaegen F
    Phys Med Biol; 2002 May; 47(10):1691-705. PubMed ID: 12069087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
    Wulff J; Baumann KS; Verbeek N; Bäumer C; Timmermann B; Zink K
    Phys Med Biol; 2018 Jun; 63(11):115013. PubMed ID: 29737969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H; Moralles M; Siqueira Pde T; Guimarães Cda C; Cintra FB; dos Santos A
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications.
    Perl J; Shin J; Schumann J; Faddegon B; Paganetti H
    Med Phys; 2012 Nov; 39(11):6818-37. PubMed ID: 23127075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.