These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39142395)
1. Phytotoxic responses of acrocarpous moss Campylopus schmidii as bioindicators in copper and cadmium contaminated environments: A comprehensive assessment. Zhang R; Chen P; Ju Z; Tang H Chemosphere; 2024 Sep; 364():143082. PubMed ID: 39142395 [TBL] [Abstract][Full Text] [Related]
2. Assessment about bioindicator capacity of acrocarpous moss Campylopus schmidii exposed to abandoned pyritic tailings. Zhang R; Wang Z; Huang H; Song J; Wu B; Wang M; Xu H J Environ Manage; 2022 Sep; 317():115471. PubMed ID: 35751270 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effects of zinc and cadmium on phytoremediation potential of Christmas moss (Vesicularia montagnei). Taeprayoon P; Pongphontong K; Somtrakoon K; Phusantisampan T; Meeinkuirt W Sci Rep; 2024 Aug; 14(1):17754. PubMed ID: 39085365 [TBL] [Abstract][Full Text] [Related]
4. Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index. Holy M; Leblond S; Pesch R; Schröder W Environ Sci Pollut Res Int; 2009 Jul; 16(5):499-507. PubMed ID: 19347376 [TBL] [Abstract][Full Text] [Related]
5. Long-term impact of cadmium in protonema cultures of Physcomitrella patens. Kováčik J; Dresler S; Babula P Ecotoxicol Environ Saf; 2020 Apr; 193():110333. PubMed ID: 32088551 [TBL] [Abstract][Full Text] [Related]
6. Speciation and bioavailability of dissolved copper in different freshwaters: comparison of modelling, biological and chemical responses in aquatic mosses and gammarids. Bourgeault A; Ciffroy P; Garnier C; Cossu-Leguille C; Masfaraud JF; Charlatchka R; Garnier JM Sci Total Environ; 2013 May; 452-453():68-77. PubMed ID: 23500400 [TBL] [Abstract][Full Text] [Related]
7. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Shakya K; Chettri MK; Sawidis T Arch Environ Contam Toxicol; 2008 Apr; 54(3):412-21. PubMed ID: 17960450 [TBL] [Abstract][Full Text] [Related]
8. The Moss Bellini E; Maresca V; Betti C; Castiglione MR; Fontanini D; Capocchi A; Sorce C; Borsò M; Bruno L; Sorbo S; Basile A; Sanità di Toppi L Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111035 [TBL] [Abstract][Full Text] [Related]
9. Metal toxicity in Phaenark C; Seechanhoi P; Sawangproh W Int J Phytoremediation; 2024 Jun; 26(8):1336-1347. PubMed ID: 38379318 [TBL] [Abstract][Full Text] [Related]
10. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Collin VC; Eymery F; Genty B; Rey P; Havaux M Plant Cell Environ; 2008 Feb; 31(2):244-57. PubMed ID: 17996014 [TBL] [Abstract][Full Text] [Related]
11. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Ibrahim MH; Chee Kong Y; Mohd Zain NA Molecules; 2017 Oct; 22(10):. PubMed ID: 29023367 [TBL] [Abstract][Full Text] [Related]
12. Nostoc entophytum cell response to cadmium exposure: A possible role of chaperon proteins GroEl and HtpG in cadmium-induced stress. Alidoust L; Zahiri HS; Maleki H; Soltani N; Vali H; Noghabi KA Ecotoxicol Environ Saf; 2019 Mar; 169():40-49. PubMed ID: 30419505 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. Świsłowski P; Nowak A; Rajfur M Environ Toxicol Chem; 2022 Jun; 41(6):1429-1438. PubMed ID: 35213067 [TBL] [Abstract][Full Text] [Related]
14. Screening of cadmium and copper phytoremediation ability of Tagetes erecta, using biochemical parameters and scanning electron microscopy-energy-dispersive X-ray microanalysis. Goswami S; Das S Environ Toxicol Chem; 2017 Sep; 36(9):2533-2542. PubMed ID: 28195353 [TBL] [Abstract][Full Text] [Related]
15. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Zhang W; Tan NG; Fu B; Li SF Metallomics; 2015 Mar; 7(3):426-38. PubMed ID: 25569820 [TBL] [Abstract][Full Text] [Related]
16. Significance of moss pretreatments in active biomonitoring surveys. Świsłowski P; Nowak A; Rajfur M Int J Phytoremediation; 2024 Feb; 26(3):304-313. PubMed ID: 37537866 [TBL] [Abstract][Full Text] [Related]
17. Oxidative stress biomarkers and metallothionein in Folsomia candida--responses to Cu and Cd. Maria VL; Ribeiro MJ; Amorim MJ Environ Res; 2014 Aug; 133():164-9. PubMed ID: 24949815 [TBL] [Abstract][Full Text] [Related]
18. [Effects of Nano-copper Oxide on Physiobiochemical Properties of Wang SQ; Sun YB; Huang QQ; Xu YM; Dong RY; Meng QY Huan Jing Ke Xue; 2023 Sep; 44(9):5204-5213. PubMed ID: 37699838 [TBL] [Abstract][Full Text] [Related]
19. Physiological, biochemical and transcriptomic insights into the mechanisms by which molybdenum mitigates cadmium toxicity in Triticum aestivum L. Wu M; Xu J; Nie Z; Shi H; Liu H; Zhang Y; Li C; Zhao P; Liu H J Hazard Mater; 2024 Jul; 472():134516. PubMed ID: 38714056 [TBL] [Abstract][Full Text] [Related]
20. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Zeng P; Guo Z; Xiao X; Peng C; Liu L; Yan D; He Y Ecotoxicol Environ Saf; 2020 Feb; 189():109973. PubMed ID: 31761549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]