BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3914248)

  • 21. Relationship between astrocytic processes and "perineuronal nets" in rat neocortex.
    Blümcke I; Eggli P; Celio MR
    Glia; 1995 Oct; 15(2):131-40. PubMed ID: 8567064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology and differentiation of radial glia in the developing rat spinal cord.
    McMahon SS; McDermott KW
    J Comp Neurol; 2002 Dec; 454(3):263-71. PubMed ID: 12442317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology.
    Chvátal A; Pastor A; Mauch M; Syková E; Kettenmann H
    Eur J Neurosci; 1995 Jan; 7(1):129-42. PubMed ID: 7536092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial glia give rise to perinodal processes.
    Sims TJ; Gilmore SA; Waxman SG
    Brain Res; 1991 May; 549(1):25-35. PubMed ID: 1893250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices.
    Chvátal A; Anderová M; Ziak D; Syková E
    J Neurosci Res; 1999 Jun; 56(5):493-505. PubMed ID: 10369216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tripotential glial precursor cell is present in the developing spinal cord.
    Rao MS; Noble M; Mayer-Pröschel M
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3996-4001. PubMed ID: 9520481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats.
    Wang JY; Gao YH; Qiao LN; Zhang JL; Duan-Mu CL; Yan YX; Chen SP; Liu JL
    BMC Complement Altern Med; 2018 Feb; 18(1):74. PubMed ID: 29466978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intermediate glial cells and reactive astrocytes revisited. A study in organotypic tissue culture.
    Munoz-Garcia D; Ludwin SK
    J Neuroimmunol; 1985 Jun; 8(4-6):237-54. PubMed ID: 2409107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraocular grafts of fetal rat spinal cord: a Golgi study of neuronal morphology and organization.
    Broton JG; Yezierski RP; Seiger A
    Exp Neurol; 1990 May; 108(2):122-9. PubMed ID: 1692285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.
    Hirano M; Goldman JE
    J Neurosci Res; 1988; 21(2-4):155-67. PubMed ID: 3216418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices.
    Vargová L; Chvátal A; Anderová M; Kubinová S; Ziak D; Syková E
    J Neurosci Res; 2001 Jul; 65(2):129-38. PubMed ID: 11438982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gliogenesis in organotypic tissue culture of the spinal cord of the embryonic mouse. I. Immunocytochemical and ultrastructural studies.
    Munoz-Garcia D; Ludwin SK
    J Neurocytol; 1986 Jun; 15(3):273-90. PubMed ID: 3528398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of presumptive long axon neurons in the substantia gelatinosa of the rat lumbosacral spinal cord: a Golgi study.
    Beal JA
    Neurosci Lett; 1983 Oct; 41(1-2):9-14. PubMed ID: 6646522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinations of nerve and glial cell volumes in histological sections.
    Geinismann YY
    Brain Res; 1971 Mar; 26(2):235-46. PubMed ID: 4926237
    [No Abstract]   [Full Text] [Related]  

  • 37. Two and three dimenstional ultrastructure of boutons and glial cells on the motoneuronal surface in the cat spinal cord.
    Poritsky R
    J Comp Neurol; 1969 Apr; 135(4):423-52. PubMed ID: 4889863
    [No Abstract]   [Full Text] [Related]  

  • 38. Light microscopy of glial cells in turtles and birds.
    Stensaas LJ; Stensaas SS
    Z Zellforsch Mikrosk Anat; 1968; 91(3):315-40. PubMed ID: 4894065
    [No Abstract]   [Full Text] [Related]  

  • 39. Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density.
    Ogden TE
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):499-510. PubMed ID: 96038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity.
    Black JA; Sontheimer H; Waxman SG
    Glia; 1993 Apr; 7(4):272-85. PubMed ID: 8391514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.