These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 39142481)

  • 1. An eco-friendly enzymatic treatment to prepare spinnable banana fibers as an alternative to cotton for textile applications.
    Mushtaq B; Nawab Y; Ahmad S; Ahmad F
    Int J Biol Macromol; 2024 Oct; 278(Pt 1):134630. PubMed ID: 39142481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-degumming of banana fibers using eco-friendly crude xylano-pectinolytic enzymes.
    Kaur A; Varghese LM; Battan B; Patra AK; Mandhan RP; Mahajan R
    Prep Biochem Biotechnol; 2020; 50(5):521-528. PubMed ID: 31922919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosoftening of banana pseudostem fiber using cellulase and pectinase enzyme isolated from Aspergillus niger for textile industry.
    W A M; J S J; P K D; S S; S AR
    J Genet Eng Biotechnol; 2023 Dec; 21(1):170. PubMed ID: 38108900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous production of commercial enzymes using agro industrial residues by statistical approach.
    Viayaraghavan P; Jeba Kumar S; Valan Arasu M; Al-Dhabi NA
    J Sci Food Agric; 2019 Apr; 99(6):2685-2696. PubMed ID: 30345553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites.
    Ortega Z; Morón M; Monzón MD; Badalló P; Paz R
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective degumming enzyme from Bacillus sp. Y1 and synergistic action of hydrogen peroxide and protease on enzymatic degumming of ramie fibers.
    Guo F; Zou M; Li X; Zhao J; Qu Y
    Biomed Res Int; 2013; 2013():212315. PubMed ID: 23586022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retting of banana pseudostem fibre using
    Patel BY; Patel HK
    Heliyon; 2022 Sep; 8(9):e10652. PubMed ID: 36158073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength.
    Shi Y; Jiang J; Ye H; Sheng Y; Zhou Y; Foong SY; Sonne C; Chong WWF; Lam SS; Xie Y; Li J; Ge S
    Environ Res; 2023 Feb; 218():114967. PubMed ID: 36455630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High tensile regenerated cellulose fibers via cyclic freeze-thawing enabled dissolution in phosphoric acid for textile-to-textile recycling of waste cotton fabrics.
    Qiao T; Yang C; Zhao L; Feng Y; Feng X; Mao Z; Wang B
    Int J Biol Macromol; 2024 Oct; 277(Pt 1):133911. PubMed ID: 39059529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of ultrasound and enzymes in textile processing of greige cotton.
    Easson M; Condon B; Villalpando A; Chang S
    Ultrasonics; 2018 Mar; 84():223-233. PubMed ID: 29161619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization.
    Cherian BM; Pothan LA; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S
    J Agric Food Chem; 2008 Jul; 56(14):5617-27. PubMed ID: 18570426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of low temperature extraction of banana juice using commercial pectinase.
    Sagu ST; Nso EJ; Karmakar S; De S
    Food Chem; 2014 May; 151():182-90. PubMed ID: 24423519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-scouring of Non-spinnable Cotton by a Crude Enzyme of a New Fungal Strain
    Jagajanantha P; Morey M; Satankar V; Mageshwaran V
    Waste Biomass Valorization; 2022; 13(4):1849-1858. PubMed ID: 34751229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle.
    Baruah J; Bardhan P; Mukherjee AK; Deka RC; Mandal M; Kalita E
    Int J Biol Macromol; 2022 Mar; 201():298-307. PubMed ID: 34999043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste.
    Villar L; Schlapp-Hackl I; Sánchez PB; Hummel M
    Biomacromolecules; 2024 Mar; 25(3):1942-1949. PubMed ID: 38385297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of enzymes for an eco-friendly approach to textile processing.
    Kumar D; Bhardwaj R; Jassal S; Goyal T; Khullar A; Gupta N
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):71838-71848. PubMed ID: 34651264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel structural design of cellulose-based conductive composite fibers for wearable e-textiles.
    Liu W; Liu H; Zhao Z; Liang D; Zhong WH; Zhang J
    Carbohydr Polym; 2023 Dec; 321():121308. PubMed ID: 37739538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications.
    Huang Z; Zhang Y; Xing T; He A; Luo Y; Wang M; Qiao S; Tong A; Shi Z; Liao X; Pan H; Liang Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132462. PubMed ID: 38772470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.