These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39143068)

  • 1. Inefficient nitrogen transport to the lower mantle by sediment subduction.
    Huang W; Yang Y; Li Y; Xu Z; Yang S; Guo S; Xia Q
    Nat Commun; 2024 Aug; 15(1):6998. PubMed ID: 39143068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phengite-based chronology of K- and Ba-rich fluid flow in two paleosubduction zones.
    Catlos EJ; Sorensen SS
    Science; 2003 Jan; 299(5603):92-5. PubMed ID: 12511647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.
    Baldwin SL; Das JP
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14174-9. PubMed ID: 26542683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High nitrogen solubility in stishovite (SiO
    Fukuyama K; Kagi H; Inoue T; Kakizawa S; Shinmei T; Hishita S; Takahata N; Sano Y
    Sci Rep; 2020 Jul; 10(1):10897. PubMed ID: 32616729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding subduction infancy to mature subduction in Southwest Japan via the self-consistent formation of a weak slab interface.
    Lee C; Kim Y
    Sci Rep; 2023 Dec; 13(1):21425. PubMed ID: 38052949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of buoyancy in the fate of ultra-high-pressure eclogite.
    Chapman T; Clarke GL; Daczko NR
    Sci Rep; 2019 Dec; 9(1):19925. PubMed ID: 31882728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Southwest Pacific Absolute Plate Kinematic Reconstruction Reveals Major Cenozoic Tonga-Kermadec Slab Dragging.
    van de Lagemaat SHA; van Hinsbergen DJJ; Boschman LM; Kamp PJJ; Spakman W
    Tectonics; 2018 Aug; 37(8):2647-2674. PubMed ID: 30344365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kimberlite eruptions driven by slab flux and subduction angle.
    Mather BR; Müller RD; Alfonso CP; Seton M; Wright NM
    Sci Rep; 2023 Jun; 13(1):9216. PubMed ID: 37280326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing fluid infiltration into oceanic crust up to ultra-high-pressure conditions.
    Rubatto D; Williams M; Markmann TA; Hermann J; Lanari P
    Contrib Mineral Petrol; 2023; 178(11):79. PubMed ID: 38616805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradual and selective trace-element enrichment in slab-released fluids at sub-arc depths.
    Ferrando S; Petrelli M; Frezzotti ML
    Sci Rep; 2019 Nov; 9(1):16393. PubMed ID: 31704982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.
    Kawamoto T; Kanzaki M; Mibe K; Matsukage KN; Ono S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18695-700. PubMed ID: 23112158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of warm subduction in the seismological properties of the forearc mantle: An example from southwest Japan.
    Lee C; Kim Y
    Sci Adv; 2021 Jul; 7(28):. PubMed ID: 34244142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep water recycling through time.
    Magni V; Bouilhol P; van Hunen J
    Geochem Geophys Geosyst; 2014 Nov; 15(11):4203-4216. PubMed ID: 26321881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of subducted argon in the deep mantle.
    Ono S
    Sci Rep; 2020 Feb; 10(1):1393. PubMed ID: 32015462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of potassium on aluminous phase stability in the lower mantle.
    Rogmann EM; Jennings ES; Ross J; Miyajima N; Walter MJ; Kohn SC; Lord OT
    Contrib Mineral Petrol; 2024; 179(5):52. PubMed ID: 38686218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrous aluminous silica phases as major water hosts in high-temperature lower mantle.
    Ishii T; Criniti G; Ohtani E; Purevjav N; Fei H; Katsura T; Mao HK
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2211243119. PubMed ID: 36279458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting of subducted sediments reconciles geophysical images of subduction zones.
    Förster MW; Selway K
    Nat Commun; 2021 Feb; 12(1):1320. PubMed ID: 33637742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphur and carbon cycling in the subduction zone mélange.
    Schwarzenbach EM; Caddick MJ; Petroff M; Gill BC; Cooperdock EHG; Barnes JD
    Sci Rep; 2018 Oct; 8(1):15517. PubMed ID: 30341323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron isotopes in boninites document rapid changes in slab inputs during subduction initiation.
    Li HY; Li X; Ryan JG; Zhang C; Xu YG
    Nat Commun; 2022 Feb; 13(1):993. PubMed ID: 35194052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.