These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39143091)

  • 1. Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing.
    Pargmann M; Ebert J; Götz M; Maldonado Quinto D; Pitz-Paal R; Kesselheim S
    Nat Commun; 2024 Aug; 15(1):6997. PubMed ID: 39143091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Line Measurement of Tracking Poses of Heliostats in Concentrated Solar Power Plants.
    Xu F; Li C; Sun F
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic algorithm optimization of heliostat field layout for the design of a central receiver solar thermal power plant.
    Haris M; Rehman AU; Iqbal S; Athar SO; Kotb H; AboRas KM; Alkuhayli A; Ghadi YY; Kitmo
    Heliyon; 2023 Nov; 9(11):e21488. PubMed ID: 38034628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility analysis of coexistence between plantation and tower concentrating solar system.
    Kuang R; Chen G; Jin Y; Xiao J; Shen Y
    Heliyon; 2023 Mar; 9(3):e14056. PubMed ID: 36923905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANFIS and ANN models to predict heliostat tracking errors.
    Sarr MP; Thiam A; Dieng B
    Heliyon; 2023 Jan; 9(1):e12804. PubMed ID: 36647353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method to determine the tracking angles of heliostats.
    Grigoriev V; Milidonis K; Blanco M; Constantinou M
    MethodsX; 2021; 8():101244. PubMed ID: 34434767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of canting errors in heliostats by flux map fitting: experimental assessment.
    Sánchez-González A; Grange B; Caliot C
    Opt Express; 2020 Dec; 28(26):39868-39889. PubMed ID: 33379527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?
    Moore J; Apt J
    Environ Sci Technol; 2013 Mar; 47(6):2487-93. PubMed ID: 23379665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.
    Chong KK
    Opt Lett; 2010 May; 35(10):1614-6. PubMed ID: 20479826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and measurement of heliostat misalignment in solar power plant using vector model.
    Carretero E; Preciado J; Salinas I; Ayora I; Heras C
    Opt Express; 2019 Apr; 27(8):A257-A268. PubMed ID: 31052880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical analysis of a multi-aperture solar central receiver system for high-temperature concentrating solar applications.
    Li L; Wang B; Pye J; Bader R; Wang W; Lipiński W
    Opt Express; 2020 Dec; 28(25):37654-37668. PubMed ID: 33379596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
    Dai Y; Li X; Zhou L; Ma X; Wang R
    Opt Express; 2016 May; 24(10):A966-73. PubMed ID: 27409969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geospatial comparison of distributed solar heat and power in Europe and the US.
    Norwood Z; Nyholm E; Otanicar T; Johnsson F
    PLoS One; 2014; 9(12):e112442. PubMed ID: 25474632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar photovoltaic panel production in Mexico: A novel machine learning approach.
    López-Flores FJ; Ramírez-Márquez C; Rubio-Castro E; Ponce-Ortega JM
    Environ Res; 2024 Apr; 246():118047. PubMed ID: 38160972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants.
    Narasiah H; Kitouni O; Scorsoglio A; Sturdza BK; Hatcher S; Katcher K; Khalesi J; Garcia D; Kusner MJ
    Sci Rep; 2024 Aug; 14(1):19086. PubMed ID: 39154008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar-driven Dish Stirling System for sustainable power generation in Bangladesh: A case study in Cox's Bazar.
    Hossain MS; Ihsan Rahat MA; Khan MSH; Salehin S; Karim MR
    Heliyon; 2023 Mar; 9(3):e14322. PubMed ID: 36938446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective-diode-based analysis of industrial solar photovoltaic panel by utilizing novel three-diode solar cell model against conventional single and double solar cell.
    Kumar R; Kumar A
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25356-25372. PubMed ID: 38472576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-Term Solar Irradiance Prediction Based on Adaptive Extreme Learning Machine and Weather Data.
    Alzahrani A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing solar power efficiency in smart grids using hybrid machine learning models for accurate energy generation prediction.
    Bhutta MS; Li Y; Abubakar M; Almasoudi FM; Alatawi KSS; Altimania MR; Al-Barashi M
    Sci Rep; 2024 Jul; 14(1):17101. PubMed ID: 39048605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrating solar thermal power.
    Müller-Steinhagen H
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110433. PubMed ID: 23816910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.