These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 39143315)
1. Peritumoral edema enhances MRI-based deep learning radiomic model for axillary lymph node metastasis burden prediction in breast cancer. Luo H; Chen Z; Xu H; Ren J; Zhou P Sci Rep; 2024 Aug; 14(1):18900. PubMed ID: 39143315 [TBL] [Abstract][Full Text] [Related]
2. MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study. Xu Z; Ding Y; Zhao K; Han C; Shi Z; Cui Y; Liu C; Lin H; Pan X; Li P; Chen M; Wang H; Deng X; Liang C; Xie Y; Liu Z Eur Radiol; 2022 Dec; 32(12):8213-8225. PubMed ID: 35704112 [TBL] [Abstract][Full Text] [Related]
3. Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer. Liu W; Chen W; Xia J; Lu Z; Fu Y; Li Y; Tan Z BMC Med Imaging; 2024 Apr; 24(1):91. PubMed ID: 38627678 [TBL] [Abstract][Full Text] [Related]
4. Radiomic features of axillary lymph nodes based on pharmacokinetic modeling DCE-MRI allow preoperative diagnosis of their metastatic status in breast cancer. Luo HB; Liu YY; Wang CH; Qing HM; Wang M; Zhang X; Chen XY; Xu GH; Zhou P; Ren J PLoS One; 2021; 16(3):e0247074. PubMed ID: 33647031 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845 [TBL] [Abstract][Full Text] [Related]
6. Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor. Shi W; Su Y; Zhang R; Xia W; Lian Z; Mao N; Wang Y; Zhang A; Gao X; Zhang Y Cancer Imaging; 2024 Sep; 24(1):122. PubMed ID: 39272199 [TBL] [Abstract][Full Text] [Related]
7. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer. Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
9. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Han L; Zhu Y; Liu Z; Yu T; He C; Jiang W; Kan Y; Dong D; Tian J; Luo Y Eur Radiol; 2019 Jul; 29(7):3820-3829. PubMed ID: 30701328 [TBL] [Abstract][Full Text] [Related]
10. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years. Qian L; Liu X; Zhou S; Zhi W; Zhang K; Li H; Li J; Chang C Front Endocrinol (Lausanne); 2024; 15():1323452. PubMed ID: 39072273 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer. Chen Y; Wang L; Dong X; Luo R; Ge Y; Liu H; Zhang Y; Wang D J Digit Imaging; 2023 Aug; 36(4):1323-1331. PubMed ID: 36973631 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Axillary Lymph Node Metastasis in Early-stage Triple-Negative Breast Cancer Using Multiparametric and Radiomic Features of Breast MRI. Song SE; Woo OH; Cho Y; Cho KR; Park KH; Kim JW Acad Radiol; 2023 Sep; 30 Suppl 2():S25-S37. PubMed ID: 37331865 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data. Yu Y; Chen R; Yi J; Huang K; Yu X; Zhang J; Song C Breast; 2024 Oct; 77():103786. PubMed ID: 39137488 [TBL] [Abstract][Full Text] [Related]
15. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
16. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI. Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822 [TBL] [Abstract][Full Text] [Related]
17. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography. Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G Eur Radiol; 2024 Sep; 34(9):6121-6131. PubMed ID: 38337068 [TBL] [Abstract][Full Text] [Related]
18. Added Value of MRI for Invasive Breast Cancer including the Entire Axilla for Evaluation of High-Level or Advanced Axillary Lymph Node Metastasis in the Post-ACOSOG Z0011 Trial Era. Byon JH; Park YV; Yoon JH; Moon HJ; Kim EK; Kim MJ; You JK Radiology; 2021 Jul; 300(1):46-54. PubMed ID: 33904772 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics. Chen W; Lin G; Kong C; Wu X; Hu Y; Chen M; Xia S; Lu C; Xu M; Ji J Br J Radiol; 2024 Feb; 97(1154):439-450. PubMed ID: 38308028 [TBL] [Abstract][Full Text] [Related]
20. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI. Wang Z; Sun H; Li J; Chen J; Meng F; Li H; Han L; Zhou S; Yu T J Magn Reson Imaging; 2022 Sep; 56(3):700-709. PubMed ID: 35108415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]