These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 39143315)

  • 21. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.
    Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J
    Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis.
    Liu Z; Hong M; Li X; Lin L; Tan X; Liu Y
    Eur J Radiol; 2024 Jul; 176():111522. PubMed ID: 38805883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A two-center study of a combined nomogram based on mammography and MRI to predict ALN metastasis in breast cancer.
    Hua Y; Peng Q; Han J; Fei J; Sun A
    Magn Reson Imaging; 2024 Jul; 110():128-137. PubMed ID: 38631535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel deep learning radiomics nomogram-based multiparametric MRI for predicting the lymph node metastasis in rectal cancer: A dual-center study.
    Yang Y; Xu Z; Cai Z; Zhao H; Zhu C; Hong J; Lu R; Lai X; Guo L; Hu Q; Xu Z
    J Cancer Res Clin Oncol; 2024 Oct; 150(10):450. PubMed ID: 39379733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiregional dynamic contrast-enhanced MRI-based integrated system for predicting pathological complete response of axillary lymph node to neoadjuvant chemotherapy in breast cancer: multicentre study.
    Li Z; Gao J; Zhou H; Li X; Zheng T; Lin F; Wang X; Chu T; Wang Q; Wang S; Cao K; Liang Y; Zhao F; Xie H; Xu C; Zhang H; Niu Q; Ma H; Mao N
    EBioMedicine; 2024 Sep; 107():105311. PubMed ID: 39191174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
    Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y
    J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer.
    Zhang X; Yang Z; Cui W; Zheng C; Li H; Li Y; Lu L; Mao J; Zeng W; Yang X; Zheng J; Shen J
    Eur Radiol; 2021 Aug; 31(8):5924-5939. PubMed ID: 33569620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the axillary lymph-node metastatic burden of breast cancer by
    Li Y; Han D; Shen C
    BMC Cancer; 2024 Jun; 24(1):704. PubMed ID: 38849770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma.
    Xu M; Yang H; Yang Q; Teng P; Hao H; Liu C; Yu S; Liu G
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):9317-9328. PubMed ID: 37208454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning Radiomics-Based Prediction of Non-sentinel Lymph Node Metastasis in Chinese Breast Cancer Patients with 1-2 Positive Sentinel Lymph Nodes: A Multicenter Study.
    Lin G; Chen W; Fan Y; Zhou Y; Li X; Hu X; Cheng X; Chen M; Kong C; Chen M; Xu M; Peng Z; Ji J
    Acad Radiol; 2024 Aug; 31(8):3081-3095. PubMed ID: 38490840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MRI radiomics and biological correlations for predicting axillary lymph node burden in early-stage breast cancer.
    Hong M; Fan S; Xu Z; Fang Z; Ling K; Lai P; Han C; Chen Z; Hou J; Liang Y; Zhou C; Wang J; Chen X; Huang Y; Xu M
    J Transl Med; 2024 Sep; 22(1):826. PubMed ID: 39243024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study.
    Gu J; Tong T; Xu D; Cheng F; Fang C; He C; Wang J; Wang B; Yang X; Wang K; Tian J; Jiang T
    Cancer; 2023 Feb; 129(3):356-366. PubMed ID: 36401611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiomic Nomogram for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer.
    Chen Y; Li J; Zhang J; Yu Z; Jiang H
    Acad Radiol; 2024 Mar; 31(3):788-799. PubMed ID: 37932165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.
    Zhu Y; Ma Y; Zhai Z; Liu A; Wang Y; Zhang Y; Li H; Zhao M; Han P; Yin L; He N; Wu Y; Sechopoulos I; Ye Z; Caballo M
    Eur Radiol; 2024 Apr; 34(4):2576-2589. PubMed ID: 37782338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.
    Qu L; Mei X; Yi Z; Zou Q; Zhou Q; Zhang D; Zhou M; Pei L; Long Q; Meng J; Zhang H; Chen Q; Yi W
    Int J Surg; 2024 Sep; 110(9):5363-5373. PubMed ID: 38847776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preoperative MRI Features Associated With Axillary Nodal Burden and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Zhang J; Yin Z; Zhang J; Song R; Cui Y; Yang X
    Korean J Radiol; 2024 Sep; 25(9):788-797. PubMed ID: 39197824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model.
    Zhang X; Liu M; Ren W; Sun J; Wang K; Xi X; Zhang G
    Front Oncol; 2022; 12():1069733. PubMed ID: 36561533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer.
    Zhang B; Yu Y; Mao Y; Wang H; Lv M; Su X; Wang Y; Li Z; Zhang Z; Bian T; Wang Q
    Acad Radiol; 2024 Mar; 31(3):800-811. PubMed ID: 37914627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.