These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 39144024)

  • 1. Deep learning models for rapid discrimination of high-grade gliomas from solitary brain metastases using multi-plane T1-weighted contrast-enhanced (T1CE) images.
    Xiong Z; Qiu J; Liang Q; Jiang J; Zhao K; Chang H; Lv C; Zhang W; Li B; Ye J; Li S; Peng S; Sun C; Chen S; Long D; Shu X
    Quant Imaging Med Surg; 2024 Aug; 14(8):5762-5773. PubMed ID: 39144024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis].
    Zhang Z; Xie J; Zhong W; Liang F; Yang R; Zhen X
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):138-145. PubMed ID: 38293985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas].
    Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936
    [No Abstract]   [Full Text] [Related]  

  • 4. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of high grade glioma and solitary brain metastases by measuring relative cerebral blood volume and fractional anisotropy: a systematic review and meta-analysis of MRI diagnostic test accuracy studies.
    Fioni F; Chen SJ; Lister INE; Ghalwash AA; Long MZ
    Br J Radiol; 2023 Jan; 96(1141):20220052. PubMed ID: 36278795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures.
    Zhang Y; Zhang H; Zhang H; Ouyang Y; Su R; Yang W; Huang B
    J Magn Reson Imaging; 2024 Sep; 60(3):909-920. PubMed ID: 37955154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation between vasogenic edema and infiltrative tumor in patients with high-grade gliomas using texture patch-based analysis.
    Artzi M; Liberman G; Blumenthal DT; Aizenstein O; Bokstein F; Ben Bashat D
    J Magn Reson Imaging; 2018 Jan; ():. PubMed ID: 29314345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics.
    Chen S; Xu Y; Ye M; Li Y; Sun Y; Liang J; Lu J; Wang Z; Zhu Z; Zhang X; Zhang B
    J Clin Med; 2022 Jun; 11(12):. PubMed ID: 35743511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study for glioma classification using deep convolutional neural networks.
    Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T
    Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors.
    Server A; Josefsen R; Kulle B; Maehlen J; Schellhorn T; Gadmar Ø; Kumar T; Haakonsen M; Langberg CW; Nakstad PH
    Acta Radiol; 2010 Apr; 51(3):316-25. PubMed ID: 20092374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis.
    Cepeda S; García-García S; Arrese I; Fernández-Pérez G; Velasco-Casares M; Fajardo-Puentes M; Zamora T; Sarabia R
    Front Oncol; 2020; 10():590756. PubMed ID: 33604286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
    Abrigo JM; Fountain DM; Provenzale JM; Law EK; Kwong JS; Hart MG; Tam WWS
    Cochrane Database Syst Rev; 2018 Jan; 1(1):CD011551. PubMed ID: 29357120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-based machine learning models predict the malignant biological behavior of meningioma.
    Li M; Liu L; Qi J; Qiao Y; Zeng H; Jiang W; Zhu R; Chen F; Huang H; Wu S
    BMC Med Imaging; 2023 Sep; 23(1):141. PubMed ID: 37759192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema.
    Server A; Kulle B; Maehlen J; Josefsen R; Schellhorn T; Kumar T; Langberg CW; Nakstad PH
    Acta Radiol; 2009 Jul; 50(6):682-9. PubMed ID: 19449234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas.
    Gu Z; Dai W; Chen J; Jiang Q; Lin W; Wang Q; Chen J; Gu C; Li J; Ying G; Zhu Y
    BMC Cancer; 2024 Mar; 24(1):350. PubMed ID: 38504164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes.
    Zhu FY; Sun YF; Yin XP; Zhang Y; Xing LH; Ma ZP; Xue LY; Wang JN
    Discov Oncol; 2023 Dec; 14(1):224. PubMed ID: 38055122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a Radiomics Signature for Supratentorial Extra-Ventricular Ependymoma Using Multimodal MR Imaging.
    Safai A; Shinde S; Jadhav M; Chougule T; Indoria A; Kumar M; Santosh V; Jabeen S; Beniwal M; Konar S; Saini J; Ingalhalikar M
    Front Neurol; 2021; 12():648092. PubMed ID: 34367044
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.