These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39144582)

  • 1. Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.
    Herman JD; Roca RE; O'Neill AG; Wong ML; Goud Lingala S; Pineda AR
    J Med Imaging (Bellingham); 2024 Jul; 11(4):045503. PubMed ID: 39144582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling human observer detection in undersampled magnetic resonance imaging (MRI).
    O'Neill AG; Valdez EL; Lingala SG; Pineda AR
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11599():. PubMed ID: 36267661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling human observer detection in undersampled magnetic resonance imaging reconstruction with total variation and wavelet sparsity regularization.
    O'Neill AG; Valdez EL; Lingala SG; Pineda AR
    J Med Imaging (Bellingham); 2023 Jan; 10(1):015502. PubMed ID: 36852415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling human observer detection for varying data acquisition in undersampled MRI for two-alternative forced choice (2-AFC) and forced localization tasks.
    Mehta R; Kawakita TA; Pineda AR
    Proc SPIE Int Soc Opt Eng; 2024 Feb; 12929():. PubMed ID: 38799476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling.
    Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K
    Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domain principal component analysis for rapid, real-time 2D MRI reconstruction from undersampled data.
    Wright M; Dietz B; Yip E; Yun J; Gabos Z; Fallone BG; Wachowicz K
    Med Phys; 2021 Nov; 48(11):6724-6739. PubMed ID: 34528275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing constrained reconstruction in magnetic resonance imaging for signal detection.
    Pineda AR; Miedema H; Lingala SG; Nayak KS
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34192682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing data acquisition in undersampled magnetic resonance imaging (MRI) using two alternative forced choice (2-AFC) and search tasks.
    Kemp TM; Kawakita TA; Mehta R; Pineda AR
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12467():. PubMed ID: 37131343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study.
    Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P
    Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting human detection performance in magnetic resonance imaging (MRI) with total variation and wavelet sparsity regularizers.
    O'Neill AG; Lingala SG; Pineda AR
    Proc SPIE Int Soc Opt Eng; 2022; 12035():. PubMed ID: 36267385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects.
    Fervers P; Zaeske C; Rauen P; Iuga AI; Kottlors J; Persigehl T; Sonnabend K; Weiss K; Bratke G
    Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling.
    Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM
    Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI.
    Siedler TM; Jakob PM; Herold V
    Magn Reson Med; 2024 Sep; 92(3):1232-1247. PubMed ID: 38748852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN).
    Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D
    NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data.
    Zhang Y; Liu T; Singh M; Çetintaş E; Luo Y; Rivenson Y; Larin KV; Ozcan A
    Light Sci Appl; 2021 Jul; 10(1):155. PubMed ID: 34326306
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Adlung A; Paschke NK; Golla AK; Bauer D; Mohamed SA; Samartzi M; Fatar M; Neumaier-Probst E; Zöllner FG; Schad LR
    NMR Biomed; 2021 Apr; 34(4):e4474. PubMed ID: 33480128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undersampling artifact reduction for free-breathing 3D stack-of-radial MRI based on a deep adversarial learning network.
    Gao C; Ghodrati V; Shih SF; Wu HH; Liu Y; Nickel MD; Vahle T; Dale B; Sai V; Felker E; Surawech C; Miao Q; Finn JP; Zhong X; Hu P
    Magn Reson Imaging; 2023 Jan; 95():70-79. PubMed ID: 36270417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
    El-Rewaidy H; Neisius U; Mancio J; Kucukseymen S; Rodriguez J; Paskavitz A; Menze B; Nezafat R
    NMR Biomed; 2020 Jul; 33(7):e4312. PubMed ID: 32352197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.