These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39145424)
1. An accurate paradigm for denoising degraded ultrasound images based on artificial intelligence systems. Al-Tahhan FE; Fares ME Microsc Res Tech; 2024 Dec; 87(12):3089-3106. PubMed ID: 39145424 [TBL] [Abstract][Full Text] [Related]
2. Recent developments in denoising medical images using deep learning: An overview of models, techniques, and challenges. Nazir N; Sarwar A; Saini BS Micron; 2024 May; 180():103615. PubMed ID: 38471391 [TBL] [Abstract][Full Text] [Related]
3. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
4. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising. Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901 [TBL] [Abstract][Full Text] [Related]
5. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study. Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187 [TBL] [Abstract][Full Text] [Related]
7. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
8. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Nosema Cells Identification for Microscopic Images. Dghim S; Travieso-González CM; Burget R Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924940 [TBL] [Abstract][Full Text] [Related]
10. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement. Li H; Wu J; Miao A; Yu P; Chen J; Zhang Y Biomed Eng Online; 2017 Apr; 16(1):46. PubMed ID: 28412952 [TBL] [Abstract][Full Text] [Related]
11. AdaRes: A deep learning-based model for ultrasound image denoising: Results of image quality metrics, radiomics, artificial intelligence, and clinical studies. Abbasian Ardakani A; Mohammadi A; Vogl TJ; Kuzan TY; Acharya UR J Clin Ultrasound; 2024 Feb; 52(2):131-143. PubMed ID: 37983736 [TBL] [Abstract][Full Text] [Related]
12. A despeckling method for ultrasound images utilizing content-aware prior and attention-driven techniques. Qiu C; Huang Z; Lin C; Zhang G; Ying S Comput Biol Med; 2023 Nov; 166():107515. PubMed ID: 37839221 [TBL] [Abstract][Full Text] [Related]
13. Refined Automatic Brain Tumor Classification Using Hybrid Convolutional Neural Networks for MRI Scans. AlTahhan FE; Khouqeer GA; Saadi S; Elgarayhi A; Sallah M Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900008 [TBL] [Abstract][Full Text] [Related]
14. An unsupervised two-step training framework for low-dose computed tomography denoising. Kim W; Lee J; Choi JH Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification. Vijay GS; Kumar HS; Srinivasa Pai P; Sriram NS; Rao RB Comput Intell Neurosci; 2012; 2012():582453. PubMed ID: 23213323 [TBL] [Abstract][Full Text] [Related]
16. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison. Anilkumar KK; Manoj VJ; Sagi TM Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042 [TBL] [Abstract][Full Text] [Related]
17. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques. Abunadi I; Senan EM Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214531 [TBL] [Abstract][Full Text] [Related]
18. Disentangling Noise from Images: A Flow-Based Image Denoising Neural Network. Liu Y; Anwar S; Qin Z; Ji P; Caldwell S; Gedeon T Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560213 [TBL] [Abstract][Full Text] [Related]
19. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
20. Low-dose CT denoising via convolutional neural network with an observer loss function. Han M; Shim H; Baek J Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]