These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39145640)

  • 1. Phase and group speeds of airborne surface waves over porous layers and periodically rough hard surfaces.
    Attenborough K; Taherzadeh S
    J Acoust Soc Am; 2024 Aug; 156(2):1123-1134. PubMed ID: 39145640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface waves over periodically-spaced rectangular strips.
    Bashir I; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Dec; 134(6):4691. PubMed ID: 25669281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffraction assisted rough ground effect: models and data.
    Bashir I; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Mar; 133(3):1281-92. PubMed ID: 23464001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds.
    Boulanger P; Attenborough K
    J Acoust Soc Am; 2005 Feb; 117(2):751-62. PubMed ID: 15759695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound penetration into a hard-backed rigid porous layer: theory and experiments.
    Tao H; Tong BN; Li KM
    J Acoust Soc Am; 2014 Aug; 136(2):475-84. PubMed ID: 25096082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outdoor ground impedance models.
    Attenborough K; Bashir I; Taherzadeh S
    J Acoust Soc Am; 2011 May; 129(5):2806-19. PubMed ID: 21568385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic insertion loss due to two dimensional periodic arrays of circular cylinders parallel to a nearby surface.
    Krynkin A; Umnova O; Sánchez-Pérez JV; Chong AY; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2011 Dec; 130(6):3736-45. PubMed ID: 22225030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials.
    Ba A; Kovalenko A; Aristégui C; Mondain-Monval O; Brunet T
    Sci Rep; 2017 Jan; 7():40106. PubMed ID: 28054661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted attenuation of sound in a rigid-porous ground from an airborne source.
    Li KM
    J Acoust Soc Am; 2008 Mar; 123(3):1352-63. PubMed ID: 18345824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.
    Zhang X
    J Acoust Soc Am; 2016 Nov; 140(5):3619. PubMed ID: 27908086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diffraction of sound by an impedance sphere in the vicinity of a ground surface.
    Li KM; Lui WK; Frommer GH
    J Acoust Soc Am; 2004 Jan; 115(1):42-56. PubMed ID: 14758994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability effect on wave propagation in saturated porous medium.
    Li JX; Rezaee R; Müller TM
    J Acoust Soc Am; 2020 Feb; 147(2):911. PubMed ID: 32113257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface acoustic wave attenuation in polycrystals: Numerical modeling using a statistical digital twin of an actual sample.
    Grabec T; Veres IA; Ryzy M
    Ultrasonics; 2022 Feb; 119():106585. PubMed ID: 34598096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of Lamb waves in an immersed periodically grooved plate: experimental detection of the scattered converted backward waves.
    Harhad N; El-Kettani ME; Djelouah H; Izbicki JL; Predoi MV
    Ultrasonics; 2014 Mar; 54(3):860-6. PubMed ID: 24262677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic response and liquefaction potential of porous seabed induced by partial standing ocean waves.
    Wang G; Liu Y; Liu K; Xu C
    Sci Rep; 2023 Nov; 13(1):19061. PubMed ID: 37925568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.