These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39145659)
1. In-Situ Polymerized High-Voltage Solid-State Lithium Metal Batteries with Dual-Reinforced Stable Interfaces. Lv Q; Li C; Liu Y; Jing Y; Sun J; Wang H; Wang L; Ren H; Wu B; Cheng T; Wang D; Liu H; Dou SX; Wang B; Wang J ACS Nano; 2024 Aug; 18(34):23253-23264. PubMed ID: 39145659 [TBL] [Abstract][Full Text] [Related]
2. In Situ Formed Gel Polymer Electrolytes Enable Stable Solid Electrolyte Interface for High-Performance Lithium Metal Batteries. Hao Q; Yan J; Gao Y; Chen F; Chen X; Qi Y; Li N ACS Appl Mater Interfaces; 2024 Aug; 16(34):44689-44696. PubMed ID: 39137323 [TBL] [Abstract][Full Text] [Related]
3. Constructing a Low-Impedance Interface on a High-Voltage LiNi Li G; Liao Y; Li Z; Xu N; Lu Y; Lan G; Sun G; Li W ACS Appl Mater Interfaces; 2020 Aug; 12(33):37013-37026. PubMed ID: 32700895 [TBL] [Abstract][Full Text] [Related]
4. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Cheng F; Zhang X; Wei P; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y Sci Bull (Beijing); 2022 Nov; 67(21):2225-2234. PubMed ID: 36545998 [TBL] [Abstract][Full Text] [Related]
5. In Situ Polymerized Quasi-Solid Electrolytes Compounded with Ionic Liquid Empowering Long-Life Cycling of 4.45 V Lithium-Metal Battery. Ma S; Zhang D; Tang Z; Li W; Zhang Y; Zhang Y; Ji K; Chen M ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38600661 [TBL] [Abstract][Full Text] [Related]
6. Organoboron- and Cyano-Grafted Solid Polymer Electrolytes Boost the Cyclability and Safety of High-Voltage Lithium Metal Batteries. Liu D; Lu Z; Lin Z; Zhang C; Dai K; Wei W ACS Appl Mater Interfaces; 2023 May; 15(17):21112-21122. PubMed ID: 37078862 [TBL] [Abstract][Full Text] [Related]
7. Design of Ultrathin Asymmetric Composite Electrolytes for Interfacial Stable Solid-State Lithium-Metal Batteries. Zhang Z; Fan W; Cui K; Gou J; Huang Y ACS Nano; 2024 Jul; 18(27):17890-17900. PubMed ID: 38917480 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of Bilayer Polymer-Based Electrolyte with Functional Molecules in Enhancing the Capacity and Cycling Stability of High-Voltage Lithium Batteries. Liu J; Liang K; Duan H; Chen G; Deng Y ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048569 [TBL] [Abstract][Full Text] [Related]
9. In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries. Sun S; Yu J; Ma X; Fang P; Yang M; Yang J; Wu M; Hu Y; Yan F Small; 2024 Oct; 20(43):e2403145. PubMed ID: 38881358 [TBL] [Abstract][Full Text] [Related]
10. Colloid Electrolyte Containing Li He X; Hao W; Shi Z; Tan Y; Yue X; Xie Y; Yan X; Liang Z ACS Nano; 2024 Aug; 18(33):22560-22571. PubMed ID: 39109932 [TBL] [Abstract][Full Text] [Related]
11. LiF/Li Lei Y; Xu X; Yin J; Xi K; Wei L; Zheng J; Wang Y; Wu H; Jiang S; Gao Y Small; 2024 Aug; 20(34):e2400365. PubMed ID: 38644295 [TBL] [Abstract][Full Text] [Related]
12. Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. Zhao CZ; Zhao Q; Liu X; Zheng J; Stalin S; Zhang Q; Archer LA Adv Mater; 2020 Mar; 32(12):e1905629. PubMed ID: 32053238 [TBL] [Abstract][Full Text] [Related]
13. A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Xi K; Wang Y; Li C; Lei Y; Xu X; Wei L; Gao Y J Colloid Interface Sci; 2025 Feb; 679(Pt A):1277-1287. PubMed ID: 39427582 [TBL] [Abstract][Full Text] [Related]
14. In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries. Xin M; Zhang Y; Liu Z; Zhang Y; Zhai Y; Xie H; Liu Y Molecules; 2024 May; 29(11):. PubMed ID: 38893331 [TBL] [Abstract][Full Text] [Related]
15. Anion-modulated Ion Conductor with Chain Conformational Transformation for stabilizing Interfacial Phase of High-Voltage Lithium Metal Batteries. Wang C; Zhao X; Li D; Yan C; Zhang Q; Fan LZ Angew Chem Int Ed Engl; 2024 May; 63(19):e202317856. PubMed ID: 38389190 [TBL] [Abstract][Full Text] [Related]
16. LiF-Rich Electrode-Electrolyte Interfaces Enabled by Bifunctional Electrolyte Additive to Achieve High-Performance Li/LiNi Lei Y; Xu X; Yin J; Xu J; Xi K; Wei L; Wu H; Jiang S; Gao Y ACS Appl Mater Interfaces; 2023 Oct; 15(40):46941-46951. PubMed ID: 37782685 [TBL] [Abstract][Full Text] [Related]
17. Lithium Nafion-Modified Li Walle KZ; Wu YS; Wu SH; Chang JK; Jose R; Yang CC ACS Appl Mater Interfaces; 2022 Apr; 14(13):15259-15274. PubMed ID: 35344344 [TBL] [Abstract][Full Text] [Related]
18. Structurally integrated asymmetric polymer electrolyte with stable Janus interface properties for high-voltage lithium metal batteries. Chen S; Ma S; Liu Z; Li Y; Yin H; Song H; Zhang M; Xin M; Sun L; Liu Y; Xie H; Cong L J Colloid Interface Sci; 2023 May; 638():595-605. PubMed ID: 36774873 [TBL] [Abstract][Full Text] [Related]
19. Enabling Scalable Polymer Electrolyte with Dual-Reinforced Stable Interface for 4.5 V Lithium-Metal Batteries. Qi S; Li M; Gao Y; Zhang W; Liu S; Zhao J; Du L Adv Mater; 2023 Nov; 35(45):e2304951. PubMed ID: 37467170 [TBL] [Abstract][Full Text] [Related]
20. In-situ polymerized composite polymer electrolyte with cesium-ion additive enables dual-interfacial compatibility in all-solid-state lithium-metal batteries. Wu M; Liu D; Qu D; Lei J; Zhang X; Chen H; Tang H J Colloid Interface Sci; 2022 Jun; 615():627-635. PubMed ID: 35231694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]