These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39145730)
1. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. Ohno R; Auditore A; Gensberger-Reigl S; Saller J; Stützer J; Weigel I; Pischetsrieder M J Agric Food Chem; 2024 Aug; 72(34):19131-19142. PubMed ID: 39145730 [TBL] [Abstract][Full Text] [Related]
2. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars. Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698 [TBL] [Abstract][Full Text] [Related]
3. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds. Gobert J; Glomb MA J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949 [TBL] [Abstract][Full Text] [Related]
4. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup. Gensberger S; Mittelmaier S; Glomb MA; Pischetsrieder M Anal Bioanal Chem; 2012 Jul; 403(10):2923-31. PubMed ID: 22382856 [TBL] [Abstract][Full Text] [Related]
5. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. Gensberger S; Glomb MA; Pischetsrieder M J Agric Food Chem; 2013 Oct; 61(43):10238-45. PubMed ID: 23452313 [TBL] [Abstract][Full Text] [Related]
6. Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods. Ruiz-Matute AI; Castro Vazquez L; Hernández-Hernández O; Sanz ML; Martínez-Castro I J Sci Food Agric; 2015 Sep; 95(12):2424-30. PubMed ID: 25331228 [TBL] [Abstract][Full Text] [Related]
7. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. Hrynets Y; Ndagijimana M; Betti M J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422 [TBL] [Abstract][Full Text] [Related]
8. Extending the spectrum of α-dicarbonyl compounds in vivo. Henning C; Liehr K; Girndt M; Ulrich C; Glomb MA J Biol Chem; 2014 Oct; 289(41):28676-88. PubMed ID: 25164824 [TBL] [Abstract][Full Text] [Related]
9. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C. Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944 [TBL] [Abstract][Full Text] [Related]
10. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Kocadağlı T; Gökmen V Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710 [TBL] [Abstract][Full Text] [Related]
11. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193 [TBL] [Abstract][Full Text] [Related]
12. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Göncüoğlu Taş N; Gökmen V Food Chem; 2017 Apr; 221():1911-1922. PubMed ID: 27979180 [TBL] [Abstract][Full Text] [Related]
13. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Distler L; Georgieva A; Kenkel I; Huppert J; Pischetsrieder M Chem Res Toxicol; 2014 Aug; 27(8):1421-30. PubMed ID: 25033248 [TBL] [Abstract][Full Text] [Related]
14. Study on the non-enzymatic browning of lotus rhizome juice during sterilization mediated by 1,2-dicarboxyl and heterocyclic compounds. Sun X; Li J; Yan S J Sci Food Agric; 2024 Jan; 104(1):362-372. PubMed ID: 37598410 [TBL] [Abstract][Full Text] [Related]
15. 2-Deoxyglucosone: A New C Bruhns P; Kaufmann M; Koch T; Kroh LW J Agric Food Chem; 2018 Nov; 66(44):11806-11811. PubMed ID: 30336014 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of α‑dicarbonyl compounds formation in glucose-glutamic acid model of Maillard reaction. Zhang L; Sun Y; Pu D; Zhang Y; Sun B; Zhao Z Food Sci Nutr; 2021 Jan; 9(1):290-302. PubMed ID: 33473293 [TBL] [Abstract][Full Text] [Related]
17. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach. Kocadağlı T; Gökmen V J Agric Food Chem; 2016 Aug; 64(32):6333-42. PubMed ID: 27477785 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms non-enzymatic browning in orange juice during storage. Paravisini L; Peterson DG Food Chem; 2019 Aug; 289():320-327. PubMed ID: 30955619 [TBL] [Abstract][Full Text] [Related]
19. 3-Deoxyglucosone, an intermediate product of the Maillard reaction. Kato H; Hayase F; Shin DB; Oimomi M; Baba S Prog Clin Biol Res; 1989; 304():69-84. PubMed ID: 2780681 [TBL] [Abstract][Full Text] [Related]
20. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Thornalley PJ; Langborg A; Minhas HS Biochem J; 1999 Nov; 344 Pt 1(Pt 1):109-16. PubMed ID: 10548540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]