These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39146375)
21. Colocalization of GWAS and eQTL Signals Detects Target Genes. Hormozdiari F; van de Bunt M; Segrè AV; Li X; Joo JWJ; Bilow M; Sul JH; Sankararaman S; Pasaniuc B; Eskin E Am J Hum Genet; 2016 Dec; 99(6):1245-1260. PubMed ID: 27866706 [TBL] [Abstract][Full Text] [Related]
22. Improved functional mapping of complex trait heritability with GSA-MiXeR implicates biologically specific gene sets. Frei O; Hindley G; Shadrin AA; van der Meer D; Akdeniz BC; Hagen E; Cheng W; O'Connell KS; Bahrami S; Parker N; Smeland OB; Holland D; ; de Leeuw C; Posthuma D; Andreassen OA; Dale AM Nat Genet; 2024 Jun; 56(6):1310-1318. PubMed ID: 38831010 [TBL] [Abstract][Full Text] [Related]
23. An in-depth association analysis of genetic variants within nicotine-related loci: Meeting in middle of GWAS and genetic fine-mapping. Mo C; Ye Z; Pan Y; Zhang Y; Wu Q; Bi C; Liu S; Mitchell B; Kochunov P; Hong LE; Ma T; Chen S Mol Cell Neurosci; 2023 Dec; 127():103895. PubMed ID: 37634742 [TBL] [Abstract][Full Text] [Related]
24. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies. Sinoquet C BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628 [TBL] [Abstract][Full Text] [Related]
25. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Benner C; Spencer CC; Havulinna AS; Salomaa V; Ripatti S; Pirinen M Bioinformatics; 2016 May; 32(10):1493-501. PubMed ID: 26773131 [TBL] [Abstract][Full Text] [Related]
26. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Foley CN; Staley JR; Breen PG; Sun BB; Kirk PDW; Burgess S; Howson JMM Nat Commun; 2021 Feb; 12(1):764. PubMed ID: 33536417 [TBL] [Abstract][Full Text] [Related]
27. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping. Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361 [TBL] [Abstract][Full Text] [Related]
28. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS. Diekstra FP; Saris CG; van Rheenen W; Franke L; Jansen RC; van Es MA; van Vught PW; Blauw HM; Groen EJ; Horvath S; Estrada K; Rivadeneira F; Hofman A; Uitterlinden AG; Robberecht W; Andersen PM; Melki J; Meininger V; Hardiman O; Landers JE; Brown RH; Shatunov A; Shaw CE; Leigh PN; Al-Chalabi A; Ophoff RA; van den Berg LH; Veldink JH PLoS One; 2012; 7(4):e35333. PubMed ID: 22509407 [TBL] [Abstract][Full Text] [Related]
29. Effect of all-but-one conditional analysis for eQTL isolation in peripheral blood. Brown M; Greenwood E; Zeng B; Powell JE; Gibson G Genetics; 2023 Jan; 223(1):. PubMed ID: 36321965 [TBL] [Abstract][Full Text] [Related]
30. Implementing a QTL detection study (GWAS) using genomic prediction methodology. Garrick DJ; Fernando RL Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895 [TBL] [Abstract][Full Text] [Related]
31. A more accurate method for colocalisation analysis allowing for multiple causal variants. Wallace C PLoS Genet; 2021 Sep; 17(9):e1009440. PubMed ID: 34587156 [TBL] [Abstract][Full Text] [Related]
32. MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity. Zhu A; Matoba N; Wilson EP; Tapia AL; Li Y; Ibrahim JG; Stein JL; Love MI PLoS Genet; 2021 Apr; 17(4):e1009455. PubMed ID: 33872308 [TBL] [Abstract][Full Text] [Related]
33. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. Wen X; Pique-Regi R; Luca F PLoS Genet; 2017 Mar; 13(3):e1006646. PubMed ID: 28278150 [TBL] [Abstract][Full Text] [Related]
34. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
35. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501 [TBL] [Abstract][Full Text] [Related]
36. An efficient unified model for genome-wide association studies and genomic selection. Li H; Su G; Jiang L; Bao Z Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943 [TBL] [Abstract][Full Text] [Related]
37. ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci. Zhang T; Klein A; Sang J; Choi J; Brown KM Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):541-548. PubMed ID: 35643189 [TBL] [Abstract][Full Text] [Related]
38. A unifying framework for joint trait analysis under a non-infinitesimal model. Johnson R; Shi H; Pasaniuc B; Sankararaman S Bioinformatics; 2018 Jul; 34(13):i195-i201. PubMed ID: 29949958 [TBL] [Abstract][Full Text] [Related]
39. Improving the coverage of credible sets in Bayesian genetic fine-mapping. Hutchinson A; Watson H; Wallace C PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791 [TBL] [Abstract][Full Text] [Related]
40. Deciphering Sex-Specific Genetic Architectures Using Local Bayesian Regressions. Funkhouser SA; Vazquez AI; Steibel JP; Ernst CW; Los Campos G Genetics; 2020 May; 215(1):231-241. PubMed ID: 32198180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]