These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39146680)
1. Soy protein isolate-xanthan gum complexes to stabilize Pickering emulsions for quercetin delivery. Li L; Wang W; Ji S; Xia Q Food Chem; 2024 Dec; 461():140794. PubMed ID: 39146680 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical properties and stability of oil-in-water emulsions stabilized by soy protein isolate and xanthan gum. Krstonošić V; Pavlović N; Nikolić I; Milutinov J; Ćirin D Int J Biol Macromol; 2024 Mar; 260(Pt 2):129610. PubMed ID: 38246463 [TBL] [Abstract][Full Text] [Related]
3. Stability, microstructural and rheological properties of Pickering emulsion stabilized by xanthan gum/lysozyme nanoparticles coupled with xanthan gum. Li Z; Zheng S; Zhao C; Liu M; Zhang Z; Xu W; Luo D; Shah BR Int J Biol Macromol; 2020 Dec; 165(Pt B):2387-2394. PubMed ID: 33132128 [TBL] [Abstract][Full Text] [Related]
4. Pickering emulsion: A multi-scale stabilization mechanism based on modified lotus root starch/xanthan gum nanoparticles. Ren X; Zhou C; Qayum A; Tang J; Liang Q Int J Biol Macromol; 2023 Apr; 233():123459. PubMed ID: 36739046 [TBL] [Abstract][Full Text] [Related]
5. Development of high-internal-phase emulsions stabilized by soy protein isolate-dextran complex for the delivery of quercetin. Du X; Hu M; Liu G; Yan S; Qi B; Zhang S; Huang Y; Li Y; Chen H; Zhu X J Sci Food Agric; 2022 Nov; 102(14):6273-6284. PubMed ID: 35510347 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin. Huang M; Wang Y; Ahmad M; Ying R; Wang Y; Tan C Food Chem; 2021 Mar; 357():129732. PubMed ID: 33872869 [TBL] [Abstract][Full Text] [Related]
7. Soy protein isolate-guar gum-goose liver oil O/W Pickering emulsions that remain stable under accelerated oxidation at high temperatures. Fan X; Li C; Shi Z; Xia Q; Du L; Zhou C; Pan D J Sci Food Agric; 2024 Jan; 104(2):1107-1115. PubMed ID: 37736877 [TBL] [Abstract][Full Text] [Related]
8. Optimization and characterization of high internal phase double emulsion (HIPDE) stabilized by with soybean protein isolate, gallic acid and xanthan gum. Hwang W; Lee J; Choi MJ Int J Biol Macromol; 2024 Apr; 264(Pt 1):130562. PubMed ID: 38431022 [TBL] [Abstract][Full Text] [Related]
9. Molecular modification of low-dissolution soy protein isolates by anionic xanthan gum, neutral guar gum, or neutral konjac glucomannan to improve the protein dissolution and stabilize fish oil emulsion. Hu Y; Bian Q; Zi Y; Shi C; Peng J; Zheng Y; Wang X; Zhong J Int J Biol Macromol; 2024 May; 267(Pt 2):131521. PubMed ID: 38608976 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study. Pocan P; Ilhan E; Oztop MH J Food Sci; 2019 May; 84(5):1087-1093. PubMed ID: 30958906 [TBL] [Abstract][Full Text] [Related]
11. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions: Stabilization mechanism based on noncovalent interaction. Sun F; Cheng T; Ren S; Yang B; Liu J; Huang Z; Guo Z; Wang Z Int J Biol Macromol; 2024 Jan; 256(Pt 1):128381. PubMed ID: 38000596 [TBL] [Abstract][Full Text] [Related]
12. Emulsifying properties of O/W emulsion stabilized by soy protein isolate and γ-polyglutamic acid electrostatic complex. Zhang B; Qi L; Xie X; Shen Y; Li J; Zhang B; Zhu H J Food Sci; 2024 Jan; 89(1):174-185. PubMed ID: 38051023 [TBL] [Abstract][Full Text] [Related]
13. Structural and Functional Properties of Soy Protein Isolates Modified by Soy Soluble Polysaccharides. Xu YT; Liu LL J Agric Food Chem; 2016 Sep; 64(38):7275-84. PubMed ID: 27608266 [TBL] [Abstract][Full Text] [Related]
14. Co-Delivery System of Vitamin B Gao T; Wu X; Gao Y; Teng F; Li Y Foods; 2023 Dec; 12(23):. PubMed ID: 38231848 [TBL] [Abstract][Full Text] [Related]
15. Freeze-thaw-stable high internal phase emulsions stabilized by soy protein isolate and chitosan complexes at pH 3.0 as promising mayonnaise replacers. Huang ZX; Lin WF; Zhang Y; Tang CH Food Res Int; 2022 Jun; 156():111309. PubMed ID: 35651068 [TBL] [Abstract][Full Text] [Related]
16. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze-thaw stability of the resultant Pickering emulsions. Zhu XF; Zheng J; Liu F; Qiu CY; Lin WF; Tang CH Food Funct; 2017 Aug; 8(8):2974-2981. PubMed ID: 28745770 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of Pickering emulsion stabilized by soy protein isolate-chitosan nanoparticles. Yang H; Su Z; Meng X; Zhang X; Kennedy JF; Liu B Carbohydr Polym; 2020 Nov; 247():116712. PubMed ID: 32829840 [TBL] [Abstract][Full Text] [Related]
18. Construction and characterization of Pickering emulsions stabilized by soy protein hydrolysate microgel particles and quercetin-loaded performance in vitro digestion. Yang J; Zhu B; Lu K; Dou J; Ning Y; Wang H; Li Y; Qi B; Jiang L Food Res Int; 2023 Jul; 169():112844. PubMed ID: 37254418 [TBL] [Abstract][Full Text] [Related]
19. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. Liu F; Tang CH J Agric Food Chem; 2013 Sep; 61(37):8888-98. PubMed ID: 23977961 [TBL] [Abstract][Full Text] [Related]
20. Characterization of bacterial cellulose nanofibers/soy protein isolate complex particles for Pickering emulsion gels: The effect of protein structure changes induced by pH. Zhang F; Shen R; Xue J; Yang X; Lin D Int J Biol Macromol; 2023 Jan; 226():254-266. PubMed ID: 36460250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]