These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39146993)

  • 21. A machine learning method to estimate PM
    Chen G; Li S; Knibbs LD; Hamm NAS; Cao W; Li T; Guo J; Ren H; Abramson MJ; Guo Y
    Sci Total Environ; 2018 Sep; 636():52-60. PubMed ID: 29702402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam.
    Ravindiran G; Hayder G; Kanagarathinam K; Alagumalai A; Sonne C
    Chemosphere; 2023 Oct; 338():139518. PubMed ID: 37454985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM
    Xu Y; Ho HC; Wong MS; Deng C; Shi Y; Chan TC; Knudby A
    Environ Pollut; 2018 Nov; 242(Pt B):1417-1426. PubMed ID: 30142557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China.
    Guo Z; Jing X; Ling Y; Yang Y; Jing N; Yuan R; Liu Y
    Sci Rep; 2024 Aug; 14(1):17923. PubMed ID: 39095454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Source Analysis of Ambient PM
    Zhang ZH; Chen N; Zhu B; Tao HT; Cheng HR
    Huan Jing Ke Xue; 2022 Mar; 43(3):1151-1158. PubMed ID: 35258179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial prediction of PM
    Bozdağ A; Dokuz Y; Gökçek ÖB
    Environ Pollut; 2020 Aug; 263(Pt A):114635. PubMed ID: 33618491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting intraurban PM
    Ashayeri M; Abbasabadi N; Heidarinejad M; Stephens B
    Environ Res; 2021 May; 196():110423. PubMed ID: 33157105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Ensemble Machine Learning Framework for the Estimation of
    Yu W; Li S; Ye T; Xu R; Song J; Guo Y
    Environ Health Perspect; 2022 Mar; 130(3):37004. PubMed ID: 35254864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urban ozone variability using automated machine learning: inference from different feature importance schemes.
    Nath SJ; Girach IA; Harithasree S; Bhuyan K; Ojha N; Kumar M
    Environ Monit Assess; 2024 Mar; 196(4):393. PubMed ID: 38520559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-source observations on the effect of atmospheric blocking on air quality in İstanbul: a study case.
    Özdemir ET; Birinci E; Deniz A
    Environ Monit Assess; 2024 Jul; 196(8):698. PubMed ID: 38963549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms.
    Sharma E; Deo RC; Prasad R; Parisi AV
    Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GIS-based air quality modelling: spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms.
    Tella A; Balogun AL
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86109-86125. PubMed ID: 34533750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting ambient PM
    Hasnain A; Hashmi MZ; Khan S; Bhatti UA; Min X; Yue Y; He Y; Wei G
    Environ Monit Assess; 2024 Apr; 196(5):487. PubMed ID: 38687422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Estimation of PM
    Wu D; Du N; Wang L; Wu YH; Zhang SL; Zhou B; Zhang XY
    Huan Jing Ke Xue; 2023 Jul; 44(7):3738-3748. PubMed ID: 37438273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unmasking the sky: high-resolution PM
    Zhang K; Lin J; Li Y; Sun Y; Tong W; Li F; Chien LC; Yang Y; Su WC; Tian H; Fu P; Qiao F; Romeiko XX; Lin S; Luo S; Craft E
    J Expo Sci Environ Epidemiol; 2024 Sep; 34(5):814-820. PubMed ID: 38561475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of various driving factors to air pollution events: Interpretability analysis from Machine learning perspective.
    Li T; Zhang Q; Peng Y; Guan X; Li L; Mu J; Wang X; Yin X; Wang Q
    Environ Int; 2023 Mar; 173():107861. PubMed ID: 36898175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a Spark Big Data Framework for PM
    Shih DH; To TH; Nguyen LSP; Wu TW; You WT
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting ambient PM
    Enebish T; Chau K; Jadamba B; Franklin M
    J Expo Sci Environ Epidemiol; 2021 Jul; 31(4):699-708. PubMed ID: 32747729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.