These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39147253)
1. Reactive oxygen species, electrode potential and pH affect CoCrMo alloy corrosion and semiconducting behavior in simulated inflammatory environments. Lee H; Kurtz MA; Gilbert JL Acta Biomater; 2024 Sep; 186():507-519. PubMed ID: 39147253 [TBL] [Abstract][Full Text] [Related]
2. In vitro fretting crevice corrosion damage of CoCrMo alloys in phosphate buffered saline: Debris generation, chemistry and distribution. Zhu D; Liu Y; Gilbert JL Acta Biomater; 2020 Sep; 114():449-459. PubMed ID: 32771589 [TBL] [Abstract][Full Text] [Related]
3. The effect of simulated inflammatory conditions and Fenton chemistry on the electrochemistry of CoCrMo alloy. Liu Y; Gilbert JL J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):209-220. PubMed ID: 28117942 [TBL] [Abstract][Full Text] [Related]
4. The effect of hypochlorous acid on the tribocorrosion of CoCrMo/Ti-6Al-4V bearing couples. Kubacki GW; Gilbert JL J Biomed Mater Res A; 2021 Dec; 109(12):2536-2544. PubMed ID: 34171172 [TBL] [Abstract][Full Text] [Related]
5. Increasing temperature accelerates Ti-6Al-4V oxide degradation and selective dissolution: An Arrhenius-based analysis. Kurtz MA; Alaniz K; Taylor LM; Moreno-Reyes A; Gilbert JL Acta Biomater; 2024 Apr; 178():352-365. PubMed ID: 38417644 [TBL] [Abstract][Full Text] [Related]
7. Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces. Bijukumar DR; Salunkhe S; Zheng G; Barba M; Hall DJ; Pourzal R; Mathew MT Acta Biomater; 2020 Jan; 101():586-597. PubMed ID: 31678260 [TBL] [Abstract][Full Text] [Related]
8. A mass balance analysis of the tribocorrosion process of titanium alloys using a single micro-asperity: Voltage and solution effects on plastic deformation, oxide repassivation, and ion dissolution. Mace A; Gilbert JL J Mech Behav Biomed Mater; 2022 Dec; 136():105531. PubMed ID: 36308875 [TBL] [Abstract][Full Text] [Related]
9. Fretting-corrosion in hip taper modular junctions: The influence of topography and pH levels - An in-vitro study. Royhman D; Pourzal R; Hall D; Lundberg HJ; Wimmer MA; Jacobs J; Hallab NJ; Mathew MT J Mech Behav Biomed Mater; 2021 Jun; 118():104443. PubMed ID: 33752094 [TBL] [Abstract][Full Text] [Related]
10. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion. Manthe J; Cheng KY; Bijukumar D; Barba M; Pourzal R; Neto M; Mathew MT J Mech Behav Biomed Mater; 2022 Oct; 134():105402. PubMed ID: 36041275 [TBL] [Abstract][Full Text] [Related]
11. Investigation of cell-accelerated corrosion (CAC) on the CoCrMo alloy with segregation banding: Hip implant applications. Kanniyappan H; Cheng KY; Badhe RV; Neto M; Bijukumar D; Barba M; Pourzal R; Mathew M J Mech Behav Biomed Mater; 2024 Apr; 152():106449. PubMed ID: 38387118 [TBL] [Abstract][Full Text] [Related]
12. The effect of hyaluronic acid on the corrosion of an orthopedic CoCrMo-alloy in simulated inflammatory conditions. Radice S; Yao J; Babauta J; Laurent MP; Wimmer MA Materialia (Oxf); 2019 Jun; 6():. PubMed ID: 31183460 [TBL] [Abstract][Full Text] [Related]
13. A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: Model development and experimental comparison. Gilbert JL; Zhu D J Biomed Mater Res B Appl Biomater; 2020 Nov; 108(8):3174-3189. PubMed ID: 32537879 [TBL] [Abstract][Full Text] [Related]
14. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH. Royhman D; Patel M; Jacobs JJ; Wimmer MA; Hallab NJ; Mathew MT Med Eng Phys; 2018 Feb; 52():1-9. PubMed ID: 29290499 [TBL] [Abstract][Full Text] [Related]
16. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation. Royhman D; Patel M; Runa MJ; Wimmer MA; Jacobs JJ; Hallab NJ; Mathew MT J Mech Behav Biomed Mater; 2016 Sep; 62():570-587. PubMed ID: 27310572 [TBL] [Abstract][Full Text] [Related]
17. Additively manufactured Ti-29Nb-21Zr shows improved oxide polarization resistance versus Ti-6Al-4V in inflammatory simulating solution. Kurtz MA; Wessinger AC; Mace A; Moreno-Reyes A; Gilbert JL J Biomed Mater Res A; 2023 Oct; 111(10):1538-1553. PubMed ID: 37129046 [TBL] [Abstract][Full Text] [Related]
18. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces. Gilbert JL; Sivan S; Liu Y; Kocagöz SB; Arnholt CM; Kurtz SM J Biomed Mater Res A; 2015 Jan; 103(1):211-23. PubMed ID: 24619511 [TBL] [Abstract][Full Text] [Related]
19. The effect of sliding onto the metal-electrolyte interface: Studying model parameter modifications by means of EIS. Cassar J; Mallia B; Karl A; Buhagiar J Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1366-1375. PubMed ID: 28415428 [TBL] [Abstract][Full Text] [Related]
20. Influence of the sliding velocity and the applied potential on the corrosion and wear behavior of HC CoCrMo biomedical alloy in simulated body fluids. Gil RA; Muñoz AI J Mech Behav Biomed Mater; 2011 Nov; 4(8):2090-102. PubMed ID: 22098909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]