These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39147623)
1. Automatic segmentation of high-risk clinical target volume and organs at risk in brachytherapy of cervical cancer with a convolutional neural network. Zhu J; Yan J; Zhang J; Yu L; Song A; Zheng Z; Chen Y; Wang S; Chen Q; Liu Z; Zhang F Cancer Radiother; 2024 Aug; 28(4):354-364. PubMed ID: 39147623 [TBL] [Abstract][Full Text] [Related]
2. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients. Ribeiro I; Janssen H; De Brabandere M; Nulens A; De Bal D; Vergote I; Van Limbergen E Radiother Oncol; 2016 Sep; 120(3):447-454. PubMed ID: 27157510 [TBL] [Abstract][Full Text] [Related]
4. Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy. Kim G; Viswanathan AN; Bhatia R; Landman Y; Roumeliotis M; Erickson B; Schmidt EJ; Lee J Phys Med Biol; 2024 Oct; 69(21):. PubMed ID: 39378904 [No Abstract] [Full Text] [Related]
5. Effect of bladder distension on doses to organs at risk in Pulsed-Dose-Rate 3D image-guided adaptive brachytherapy for locally advanced cervical cancer. Nesseler JP; Charra-Brunaud C; Salleron J; Py JF; Huertas A; Meknaci E; Courrech F; Peiffert D; Renard-Oldrini S Brachytherapy; 2017; 16(5):976-980. PubMed ID: 28694116 [TBL] [Abstract][Full Text] [Related]
6. [Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer]. Peng Q; Peng Y; Zhu J; Cai M; Zhou L Nan Fang Yi Ke Da Xue Xue Bao; 2018 Nov; 38(11):1344-1348. PubMed ID: 30514683 [TBL] [Abstract][Full Text] [Related]
7. Image-based 3D treatment planning for vaginal cylinder brachytherapy: dosimetric effects of bladder filling on organs at risk. Hung J; Shen S; De Los Santos JF; Kim RY Int J Radiat Oncol Biol Phys; 2012 Jul; 83(3):980-5. PubMed ID: 22138458 [TBL] [Abstract][Full Text] [Related]
8. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of offline adaptive planning techniques in image-guided brachytherapy of cervical cancer. Liu H; Kinard J; Maurer J; Shang Q; Vanderstraeten C; Hayes L; Sintay B; Wiant D J Appl Clin Med Phys; 2018 Nov; 19(6):316-322. PubMed ID: 30284370 [TBL] [Abstract][Full Text] [Related]
10. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks. Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783 [TBL] [Abstract][Full Text] [Related]
11. Impact of delineation uncertainties on dose to organs at risk in CT-guided intracavitary brachytherapy. Duane FK; Langan B; Gillham C; Walsh L; Rangaswamy G; Lyons C; Dunne M; Walker C; McArdle O Brachytherapy; 2014; 13(2):210-8. PubMed ID: 24090973 [TBL] [Abstract][Full Text] [Related]
12. Feasibility study of toxicity outcomes using GEC-ESTRO contouring guidelines on CT based instead of MRI-based planning in locally advanced cervical cancer patients. Koh V; Choo BA; Lee KM; Tan TH; Low JH; Ng SY; Ilancheran A; Shen L; Tang J Brachytherapy; 2017; 16(1):126-132. PubMed ID: 27816539 [TBL] [Abstract][Full Text] [Related]
13. 3D brachytherapy for cervical cancer: New optimization ways. Fumagalli I; Haie-Méder C; Chargari C Cancer Radiother; 2018 Jun; 22(4):345-351. PubMed ID: 29776831 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation of magnetic resonance images for high-dose-rate cervical cancer brachytherapy using deep learning. Yoganathan SA; Paul SN; Paloor S; Torfeh T; Chandramouli SH; Hammoud R; Al-Hammadi N Med Phys; 2022 Mar; 49(3):1571-1584. PubMed ID: 35094405 [TBL] [Abstract][Full Text] [Related]
15. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience. Duprez D; Trauernicht C; Simonds H; Williams O J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet. Xue X; Sun L; Liang D; Zhu J; Liu L; Sun Q; Liu H; Gao J; Fu X; Ding J; Dai X; Tao L; Cheng J; Li T; Zhou F Phys Med Biol; 2024 Sep; 69(19):. PubMed ID: 39270708 [No Abstract] [Full Text] [Related]
17. RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning. Mao X; Pineau J; Keyes R; Enger SA Int J Radiat Oncol Biol Phys; 2020 Nov; 108(3):802-812. PubMed ID: 32413546 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow. Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762 [No Abstract] [Full Text] [Related]
19. Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans. Bondar ML; Hoogeman MS; Mens JW; Quint S; Ahmad R; Dhawtal G; Heijmen BJ Int J Radiat Oncol Biol Phys; 2012 Aug; 83(5):1617-23. PubMed ID: 22270164 [TBL] [Abstract][Full Text] [Related]
20. The value of systematic contouring of the bowel for treatment plan optimization in image-guided cervical cancer high-dose-rate brachytherapy. Damato AL; Buzurovic I; Bhagwat MS; Cormack RA; Devlin PM; Friesen S; Hansen J; Lee LJ; Manuel MM; Cho LP; O'Farrell D; Viswanathan AN Brachytherapy; 2017; 16(3):579-585. PubMed ID: 28256433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]