These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 39148776)
1. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Yu Y; Liu Q; Zeng J; Tan Y; Tang Y; Wei G Chem Sci; 2024 Aug; 15(32):12806-12818. PubMed ID: 39148776 [TBL] [Abstract][Full Text] [Related]
2. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Petronilho EC; Pedrote MM; Marques MA; Passos YM; Mota MF; Jakobus B; de Sousa GDS; Pereira da Costa F; Felix AL; Ferretti GDS; Almeida FP; Cordeiro Y; Vieira TCRG; de Oliveira GAP; Silva JL Chem Sci; 2021 Apr; 12(21):7334-7349. PubMed ID: 34163823 [TBL] [Abstract][Full Text] [Related]
3. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Liu Q; Yu Y; Wei G Phys Chem Chem Phys; 2024 Jul; 26(29):20068-20086. PubMed ID: 39007865 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol. Liu Q; Li L; Yu Y; Wei G J Phys Chem B; 2023 Sep; 127(36):7708-7720. PubMed ID: 37665658 [TBL] [Abstract][Full Text] [Related]
5. Pathogenic Mutation ΔK280 Promotes Hydrophobic Interactions Involving Microtubule-Binding Domain and Enhances Liquid-Liquid Phase Separation of Tau. Chen Y; Sun X; Tang Y; Tan Y; Guo C; Pan T; Zhang X; Luo J; Wei G Small; 2024 Oct; ():e2406429. PubMed ID: 39421885 [TBL] [Abstract][Full Text] [Related]
6. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Petronilho EC; de Andrade GC; de Sousa GDS; Almeida FP; Mota MF; Gomes AVDS; Pinheiro CHS; da Silva MC; Arruda HRS; Marques MA; Vieira TCRG; de Oliveira GAP; Silva JL Commun Chem; 2024 Sep; 7(1):207. PubMed ID: 39284933 [TBL] [Abstract][Full Text] [Related]
7. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Chen C; Fu G; Guo Q; Xue S; Luo SZ Int J Biol Macromol; 2022 Dec; 222(Pt A):207-216. PubMed ID: 36108750 [TBL] [Abstract][Full Text] [Related]
8. Uncovering Intermolecular Interactions Driving the Liquid-Liquid Phase Separation of the TDP-43 Low-Complexity Domain via Atomistic Dimerization Simulations. Tang H; Sun Y; Wang L; Ke PC; Ding F J Chem Inf Model; 2024 Oct; 64(19):7590-7601. PubMed ID: 39342654 [TBL] [Abstract][Full Text] [Related]
9. Distinct Effects of Familial Parkinson's Disease-Associated Mutations on α-Synuclein Phase Separation and Amyloid Aggregation. Xu B; Fan F; Liu Y; Liu Y; Zhou L; Yu H Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238596 [TBL] [Abstract][Full Text] [Related]
10. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity. Hibino E; Tenno T; Hiroaki H Front Mol Biosci; 2022; 9():869851. PubMed ID: 35558561 [TBL] [Abstract][Full Text] [Related]
11. Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Liu X; Tian W; Cheng J; Li D; Liu T; Zhang L Comput Biol Chem; 2020 Feb; 84():107194. PubMed ID: 31881526 [TBL] [Abstract][Full Text] [Related]
12. Influence of ALS-linked M337V mutation on the conformational ensembles of TDP-43 Zeng J; Tang Y; Dong X; Li F; Wei G Proteins; 2024 Sep; 92(9):1059-1069. PubMed ID: 36841957 [TBL] [Abstract][Full Text] [Related]
13. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. Kovachev PS; Banerjee D; Rangel LP; Eriksson J; Pedrote MM; Martins-Dinis MMDC; Edwards K; Cordeiro Y; Silva JL; Sanyal S J Biol Chem; 2017 Jun; 292(22):9345-9357. PubMed ID: 28420731 [TBL] [Abstract][Full Text] [Related]
14. Water Leakage Pathway Leads to Internal Hydration of the p53 Core Domain. Lima IDM; Pedrote MM; Marques MA; Sousa GDS; Silva JL; de Oliveira GAP; Cino EA Biochemistry; 2023 Jan; 62(1):35-43. PubMed ID: 36535020 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation on regulation of liquid-liquid phase separation of repetitive peptides. Yang X; Wang Y; Yang G Sci Rep; 2024 Jun; 14(1):13382. PubMed ID: 38862770 [TBL] [Abstract][Full Text] [Related]
17. A Spectrophotometric Turbidity Assay to Study Liquid-Liquid Phase Separation of UBQLN2 In Vitro. Raymond-Smiedy P; Bucknor B; Yang Y; Zheng T; Castañeda CA Methods Mol Biol; 2023; 2551():515-541. PubMed ID: 36310223 [TBL] [Abstract][Full Text] [Related]
18. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Li P; Chen J; Wang X; Su Z; Gao M; Huang Y Neurobiol Dis; 2023 Jul; 183():106167. PubMed ID: 37230179 [TBL] [Abstract][Full Text] [Related]
19. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L. Lei J; Li X; Cai M; Guo T; Lin D; Deng X; Li Y Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077492 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]