These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 39148799)

  • 1. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials.
    Williams CD; Kalayan J; Burton NA; Bryce RA
    Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations.
    Fan Z; Wang Y; Ying P; Song K; Wang J; Wang Y; Zeng Z; Xu K; Lindgren E; Rahm JM; Gabourie AJ; Liu J; Dong H; Wu J; Chen Y; Zhong Z; Sun J; Erhart P; Su Y; Ala-Nissila T
    J Chem Phys; 2022 Sep; 157(11):114801. PubMed ID: 36137808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations.
    Willow SY; Kim DG; Sundheep R; Hajibabaei A; Kim KS; Myung CW
    Phys Chem Chem Phys; 2024 Aug; 26(33):22073-22082. PubMed ID: 39113586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction dynamics of Diels-Alder reactions from machine learned potentials.
    Young TA; Johnston-Wood T; Zhang H; Duarte F
    Phys Chem Chem Phys; 2022 Sep; 24(35):20820-20827. PubMed ID: 36004770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry.
    Fabregat R; Fabrizio A; Meyer B; Hollas D; Corminboeuf C
    J Chem Theory Comput; 2020 May; 16(5):3084-3094. PubMed ID: 32212720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning.
    Jin Y; Johannissen LO; Hay S
    Proteins; 2021 Feb; ():. PubMed ID: 33629765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials.
    Chen MS; Morawietz T; Mori H; Markland TE; Artrith N
    J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating Minimal Training Sets for Machine Learned Potentials.
    Finkbeiner J; Tovey S; Holm C
    Phys Rev Lett; 2024 Apr; 132(16):167301. PubMed ID: 38701485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Anomalous Diffusion of Water in Aqueous Electrolytes Using Machine Learned Potentials.
    Avula NVS; Klein ML; Balasubramanian S
    J Phys Chem Lett; 2023 Oct; 14(42):9500-9507. PubMed ID: 37851540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.