These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 39149774)

  • 1. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads.
    Chou CY; Chiang PC; Li CC; Chang JW; Lu PH; Hsu WF; Chang LC; Hsu JL; Wu MS; Wo AM
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):44386-44398. PubMed ID: 39149774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma.
    Onódi Z; Pelyhe C; Terézia Nagy C; Brenner GB; Almási L; Kittel Á; Manček-Keber M; Ferdinandy P; Buzás EI; Giricz Z
    Front Physiol; 2018; 9():1479. PubMed ID: 30405435
    [No Abstract]   [Full Text] [Related]  

  • 3. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum.
    Yang J; Gao X; Xing X; Huang H; Tang Q; Ma S; Xu X; Liang C; Li M; Liao L; Tian W
    Int J Nanomedicine; 2021; 16():6681-6692. PubMed ID: 34616151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-based lipoprotein depletion improves extracellular vesicle isolation and functional analysis.
    Merij LB; da Silva LR; Palhinha L; Gomes MT; Dib PRB; Martins-Gonçalves R; Toledo-Quiroga K; Raposo-Nunes MA; Andrade FB; de Toledo Martins S; Nascimento ALR; Rocha VN; Alves LR; Bozza PT; de Oliveira Trugilho MR; Hottz ED
    J Thromb Haemost; 2024 May; 22(5):1372-1388. PubMed ID: 38278418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification.
    Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H
    Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation.
    Mol EA; Goumans MJ; Doevendans PA; Sluijter JPG; Vader P
    Nanomedicine; 2017 Aug; 13(6):2061-2065. PubMed ID: 28365418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the regenerative capacity of human serum exosomes after a simple multistep separation from lipoproteins.
    de Boer C; Calder B; Blackhurst D; Marais D; Blackburn J; Steinmaurer M; Woudberg NJ; Lecour S; Lovett J; Myburgh K; Bezuidenhout D; Human P; Davies NH
    J Tissue Eng Regen Med; 2021 Jan; 15(1):63-77. PubMed ID: 33175463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of Extracellular Vesicles from Human Follicular Fluid: Size-Exclusion Chromatography versus Ultracentrifugation.
    Soares M; Pinto MM; Nobre RJ; de Almeida LP; da Graça Rasteiro M; Almeida-Santos T; Ramalho-Santos J; Sousa AP
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and function of extracellular vesicles in a canine mammary tumour cell line: Ultracentrifugation versus size exclusion chromatography.
    Moccia V; Sammarco A; Ferro S; Cavicchioli L; Zappulli V
    Vet Comp Oncol; 2023 Mar; 21(1):36-44. PubMed ID: 36111535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography.
    Martínez-Greene JA; Hernández-Ortega K; Quiroz-Baez R; Resendis-Antonio O; Pichardo-Casas I; Sinclair DA; Budnik B; Hidalgo-Miranda A; Uribe-Querol E; Ramos-Godínez MDP; Martínez-Martínez E
    J Extracell Vesicles; 2021 Apr; 10(6):e12087. PubMed ID: 33936570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigate the efficacy of size exclusion chromatography for the isolation of extracellular vesicles from C. elegans.
    Thomas S; Kaur J; Kamboj R; Thangariyal S; Yadav R; Kumar K; Dhania NK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Feb; 1233():123982. PubMed ID: 38176095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins.
    Karimi N; Cvjetkovic A; Jang SC; Crescitelli R; Hosseinpour Feizi MA; Nieuwland R; Lötvall J; Lässer C
    Cell Mol Life Sci; 2018 Aug; 75(15):2873-2886. PubMed ID: 29441425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Framework for rapid comparison of extracellular vesicle isolation methods.
    Ter-Ovanesyan D; Norman M; Lazarovits R; Trieu W; Lee JH; Church GM; Walt DR
    Elife; 2021 Nov; 10():. PubMed ID: 34783650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies.
    Benedikter BJ; Bouwman FG; Vajen T; Heinzmann ACA; Grauls G; Mariman EC; Wouters EFM; Savelkoul PH; Lopez-Iglesias C; Koenen RR; Rohde GGU; Stassen FRM
    Sci Rep; 2017 Nov; 7(1):15297. PubMed ID: 29127410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma.
    Stranska R; Gysbrechts L; Wouters J; Vermeersch P; Bloch K; Dierickx D; Andrei G; Snoeck R
    J Transl Med; 2018 Jan; 16(1):1. PubMed ID: 29316942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Circulating Extracellular Vesicles by High-Performance Size-Exclusion Chromatography.
    Takov K; Teng IJ; Mayr M
    Methods Mol Biol; 2022; 2504():31-40. PubMed ID: 35467277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Automated, Label-Free Isolation of Extracellular Vesicles from Whole Blood for Cancer Diagnosis and Monitoring.
    Sunkara V; Kim CJ; Park J; Woo HK; Kim D; Ha HK; Kim MH; Son Y; Kim JR; Cho YK
    Theranostics; 2019; 9(7):1851-1863. PubMed ID: 31037143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography.
    Monguió-Tortajada M; Gálvez-Montón C; Bayes-Genis A; Roura S; Borràs FE
    Cell Mol Life Sci; 2019 Jun; 76(12):2369-2382. PubMed ID: 30891621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a simplified dichotomic size-exclusion chromatography for isolating extracellular vesicles toward clinical applications.
    Guo J; Wu C; Lin X; Zhou J; Zhang J; Zheng W; Wang T; Cui Y
    J Extracell Vesicles; 2021 Sep; 10(11):e12145. PubMed ID: 34514732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of extracellular vesicle isolation methods from human stool supernatant.
    Northrop-Albrecht EJ; Taylor WR; Huang BQ; Kisiel JB; Lucien F
    J Extracell Vesicles; 2022 Apr; 11(4):e12208. PubMed ID: 35383410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.