These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 39150579)

  • 1. FitScore: a fast machine learning-based score for 3D virtual screening enrichment.
    Gehlhaar DK; Mermelstein DJ
    J Comput Aided Mol Des; 2024 Aug; 38(1):29. PubMed ID: 39150579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking Score ML: Target-Specific Machine Learning Models Improving Docking-Based Virtual Screening in 155 Targets.
    Liu H; Hu B; Chen P; Wang X; Wang H; Wang S; Wang J; Lin B; Cheng M
    J Chem Inf Model; 2024 Jul; 64(14):5413-5426. PubMed ID: 38958413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FINDSITE
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2018 Nov; 58(11):2343-2354. PubMed ID: 30278128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Art and Science of Molecular Docking.
    Paggi JM; Pandit A; Dror RO
    Annu Rev Biochem; 2024 Aug; 93(1):389-410. PubMed ID: 38594926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening.
    Guedes IA; Pereira da Silva MM; Galheigo M; Krempser E; de Magalhães CS; Correa Barbosa HJ; Dardenne LE
    J Mol Biol; 2024 Sep; 436(17):168548. PubMed ID: 39237203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-Ligand Empirical Interaction Components for Virtual Screening.
    Yan Y; Wang W; Sun Z; Zhang JZH; Ji C
    J Chem Inf Model; 2017 Aug; 57(8):1793-1806. PubMed ID: 28678484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Based Virtual Screening.
    Li Q; Shah S
    Methods Mol Biol; 2017; 1558():111-124. PubMed ID: 28150235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.