These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416 [TBL] [Abstract][Full Text] [Related]
4. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242 [TBL] [Abstract][Full Text] [Related]
5. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Leroux AE; Krauth-Siegel RL Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324 [TBL] [Abstract][Full Text] [Related]
6. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Pramanik PK; Chakraborti S; Bagchi A; Chakraborti T Sci Rep; 2020 Nov; 10(1):20440. PubMed ID: 33235245 [TBL] [Abstract][Full Text] [Related]
7. Targeting the Trypanothione Reductase of Tissue-Residing Mukherjee D; Yousuf M; Dey S; Chakraborty S; Chaudhuri A; Kumar V; Sarkar B; Nath S; Hussain A; Dutta A; Mishra T; Roy BG; Singh S; Chakraborty S; Adhikari S; Pal C J Med Chem; 2020 Dec; 63(24):15621-15638. PubMed ID: 33296601 [TBL] [Abstract][Full Text] [Related]
8. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis. Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222 [TBL] [Abstract][Full Text] [Related]
9. Identification of potential anti-leishmanial agents using computational investigation and biological evaluation against trypanothione reductase. Kuldeep J; R K; Kaur P; Goyal N; Siddiqi MI J Biomol Struct Dyn; 2021 Feb; 39(3):960-969. PubMed ID: 31984862 [TBL] [Abstract][Full Text] [Related]
10. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. Pandey RK; Kumbhar BV; Srivastava S; Malik R; Sundar S; Kunwar A; Prajapati VK J Biomol Struct Dyn; 2017 Jan; 35(1):141-158. PubMed ID: 27043972 [TBL] [Abstract][Full Text] [Related]
11. Insights about resveratrol analogs against trypanothione reductase of da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445 [TBL] [Abstract][Full Text] [Related]
12. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517 [TBL] [Abstract][Full Text] [Related]
13. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811 [TBL] [Abstract][Full Text] [Related]
14. Identification of Phan TN; Park KP; Shum D; No JH Molecules; 2024 Apr; 29(8):. PubMed ID: 38675653 [TBL] [Abstract][Full Text] [Related]
15. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Pandey RK; Verma P; Sharma D; Bhatt TK; Sundar S; Prajapati VK Biomed Pharmacother; 2016 Oct; 83():141-152. PubMed ID: 27470561 [TBL] [Abstract][Full Text] [Related]
16. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461 [TBL] [Abstract][Full Text] [Related]
17. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Sasidharan S; Saudagar P Int J Biol Macromol; 2020 Dec; 164():2987-3004. PubMed ID: 32798546 [TBL] [Abstract][Full Text] [Related]
18. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach. Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998 [TBL] [Abstract][Full Text] [Related]
19. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Herrera-Acevedo C; Dos Santos Maia M; Cavalcanti ÉBVS; Coy-Barrera E; Scotti L; Scotti MT Mol Divers; 2021 Nov; 25(4):2411-2427. PubMed ID: 32909084 [TBL] [Abstract][Full Text] [Related]
20. Dual-target drugs against Leishmania donovani for potential novel therapeutics. Bora K; Sarma M; Kanaujia SP; Dubey VK Sci Rep; 2023 Oct; 13(1):18363. PubMed ID: 37884555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]