These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39150581)

  • 1. Identification of Novel Antileishmanial Chemotypes By High-Throughput Virtual and In Vitro Screening.
    Khan H; Hakami MA; Alamri MA; Alotaibi BS; Ullah N; Khan R; Khalid A; Abdalla AN; Wadood A
    Acta Parasitol; 2024 Sep; 69(3):1439-1457. PubMed ID: 39150581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential anti-leishmanial agents using computational investigation and biological evaluation against trypanothione reductase.
    Kuldeep J; R K; Kaur P; Goyal N; Siddiqi MI
    J Biomol Struct Dyn; 2021 Feb; 39(3):960-969. PubMed ID: 31984862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach.
    Mehwish S; Khan H; Rehman AU; Khan AU; Khan MA; Hayat O; Ahmad M; Wadood A; Ullah N
    3 Biotech; 2019 Aug; 9(8):303. PubMed ID: 31355112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.
    Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK
    J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach.
    Pandey RK; Sharma D; Bhatt TK; Sundar S; Prajapati VK
    J Biomol Struct Dyn; 2015; 33(12):2541-53. PubMed ID: 26305585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach.
    Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK
    Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-target drugs against Leishmania donovani for potential novel therapeutics.
    Bora K; Sarma M; Kanaujia SP; Dubey VK
    Sci Rep; 2023 Oct; 13(1):18363. PubMed ID: 37884555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Antileishmanial Activity and
    de Aquino TM; França PHB; Rodrigues ÉEES; Nascimento IJS; Santos-Júnior PFS; Aquino PGV; Santos MS; Queiroz AC; Araújo MV; Alexandre-Moreira MS; Rodrigues RRL; Rodrigues KAF; Freitas JD; Bricard J; Meneghetti MR; Bourguignon JJ; Schmitt M; da Silva-Júnior EF; de Araújo-Júnior JX
    Med Chem; 2022; 18(2):151-169. PubMed ID: 33593264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents.
    Venkatesan SK; Saudagar P; Shukla AK; Dubey VK
    Interdiscip Sci; 2011 Sep; 3(3):217-31. PubMed ID: 21956744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Docking and in Vitro Antileishmanial Evaluation of Chromene-2-thione Analogues.
    Verma RK; Prajapati VK; Verma GK; Chakraborty D; Sundar S; Rai M; Dubey VK; Singh MS
    ACS Med Chem Lett; 2012 Mar; 3(3):243-7. PubMed ID: 24936236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.
    Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F
    Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multitarget anti-parasitic activities of isoquinoline alkaloids isolated from Hippeastrum aulicum (Amaryllidaceae).
    Bessa CDPB; Feu AE; de Menezes RPB; Scotti MT; Lima JMG; Lima ML; Tempone AG; de Andrade JP; Bastida J; Borges WS
    Phytomedicine; 2024 Jun; 128():155414. PubMed ID: 38503155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of
    Bhowmik D; Jagadeesan R; Rai P; Nandi R; Gugan K; Kumar D
    J Biomol Struct Dyn; 2021 Mar; 39(5):1838-1852. PubMed ID: 32141397
    [No Abstract]   [Full Text] [Related]  

  • 14. Insights about resveratrol analogs against trypanothione reductase of
    da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ
    J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis.
    Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K
    Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach.
    Herrera-Acevedo C; Dos Santos Maia M; Cavalcanti ÉBVS; Coy-Barrera E; Scotti L; Scotti MT
    Mol Divers; 2021 Nov; 25(4):2411-2427. PubMed ID: 32909084
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Mansuri R; Kumar A; Rana S; Panthi B; Ansari MY; Das S; Dikhit MR; Sahoo GC; Das P
    Antimicrob Agents Chemother; 2017 Jul; 61(7):. PubMed ID: 28461317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel chemical scaffold as potential drug against Leishmania donovani: Integrated computational and experimental approaches.
    Ranjan P; Dubey VK
    J Cell Biochem; 2023 Sep; 124(9):1404-1422. PubMed ID: 37566640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of novel Leishmania major trypanothione synthetase inhibitors by high-throughput screening.
    Phan TN; Park KP; Benítez D; Comini MA; Shum D; No JH
    Biochem Biophys Res Commun; 2022 Dec; 637():308-313. PubMed ID: 36413853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania.
    Pandey RK; Verma P; Sharma D; Bhatt TK; Sundar S; Prajapati VK
    Biomed Pharmacother; 2016 Oct; 83():141-152. PubMed ID: 27470561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.