These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39150817)

  • 1. Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction.
    Hu X; Yi H; Cheng H; Zhao Y; Zhang D; Li J; Ruan J; Zhang J; Lu X
    IEEE Trans Nanobioscience; 2024 Oct; 23(4):564-571. PubMed ID: 39150817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network.
    Lai M; Chen G; Yang H; Yang J; Jiang Z; Wu M; Zheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1731-1734. PubMed ID: 34891621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality.
    Lu X; Chen G; Li J; Hu X; Sun F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2681-2689. PubMed ID: 36374879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction.
    Fan K; Gökbağ B; Tang S; Li S; Huang Y; Wang L; Cheng L; Li L
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks.
    Hasibi R; Michoel T
    BMC Bioinformatics; 2021 Oct; 22(1):525. PubMed ID: 34706640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of synthetic lethality based on a functional network by using machine learning algorithms.
    Li J; Lu L; Zhang YH; Liu M; Chen L; Huang T; Cai YD
    J Cell Biochem; 2019 Jan; 120(1):405-416. PubMed ID: 30125975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks.
    Wang P; Gao L; Hu Y; Li F
    BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.
    Zhang G; Chen Y; Yan C; Wang J; Liang W; Luo J; Luo H
    Front Pharmacol; 2024; 15():1398231. PubMed ID: 38835667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised feature selection via latent representation learning and manifold regularization.
    Tang C; Bian M; Liu X; Li M; Zhou H; Wang P; Yin H
    Neural Netw; 2019 Sep; 117():163-178. PubMed ID: 31170576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization.
    Wu Q; Wang Z; Li C; Ye Y; Li Y; Sun N
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S9. PubMed ID: 25708164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.