These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 39150946)
1. bHLH transcription factors cooperate with chromatin remodelers to regulate cell fate decisions during Arabidopsis stomatal development. Liu A; Mair A; Matos JL; Vollbrecht M; Xu SL; Bergmann DC PLoS Biol; 2024 Aug; 22(8):e3002770. PubMed ID: 39150946 [TBL] [Abstract][Full Text] [Related]
2. Cell Fate Programming by Transcription Factors and Epigenetic Machinery in Stomatal Development. Liu A; Mair A; Matos JL; Vollbrecht M; Xu SL; Bergmann DC bioRxiv; 2023 Aug; ():. PubMed ID: 37662219 [TBL] [Abstract][Full Text] [Related]
3. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types. Triviño M; Martín-Trillo M; Ballesteros I; Delgado D; de Marcos A; Desvoyes B; Gutiérrez C; Mena M; Fenoll C Plant J; 2013 Sep; 75(5):808-22. PubMed ID: 23662679 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional control of cell fate in the stomatal lineage. Simmons AR; Bergmann DC Curr Opin Plant Biol; 2016 Feb; 29():1-8. PubMed ID: 26550955 [TBL] [Abstract][Full Text] [Related]
5. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. Matos JL; Lau OS; Hachez C; Cruz-Ramírez A; Scheres B; Bergmann DC Elife; 2014 Oct; 3():. PubMed ID: 25303364 [TBL] [Abstract][Full Text] [Related]
6. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Lau OS; Davies KA; Chang J; Adrian J; Rowe MH; Ballenger CE; Bergmann DC Science; 2014 Sep; 345(6204):1605-9. PubMed ID: 25190717 [TBL] [Abstract][Full Text] [Related]
7. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Lopez-Anido CB; Vatén A; Smoot NK; Sharma N; Guo V; Gong Y; Anleu Gil MX; Weimer AK; Bergmann DC Dev Cell; 2021 Apr; 56(7):1043-1055.e4. PubMed ID: 33823130 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. Yang KZ; Jiang M; Wang M; Xue S; Zhu LL; Wang HZ; Zou JJ; Lee EK; Sack F; Le J Mol Plant; 2015 May; 8(5):783-95. PubMed ID: 25680231 [TBL] [Abstract][Full Text] [Related]
9. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. MacAlister CA; Ohashi-Ito K; Bergmann DC Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265 [TBL] [Abstract][Full Text] [Related]
10. Termination of asymmetric cell division and differentiation of stomata. Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267 [TBL] [Abstract][Full Text] [Related]
11. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. Hachez C; Ohashi-Ito K; Dong J; Bergmann DC Plant Physiol; 2011 Mar; 155(3):1458-72. PubMed ID: 21245191 [TBL] [Abstract][Full Text] [Related]
12. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage. Vatén A; Soyars CL; Tarr PT; Nimchuk ZL; Bergmann DC Dev Cell; 2018 Oct; 47(1):53-66.e5. PubMed ID: 30197241 [TBL] [Abstract][Full Text] [Related]
13. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. McKown KH; Anleu Gil MX; Mair A; Xu SL; Raissig MT; Bergmann DC Plant Cell; 2023 Feb; 35(2):756-775. PubMed ID: 36440974 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Peterson KM; Shyu C; Burr CA; Horst RJ; Kanaoka MM; Omae M; Sato Y; Torii KU Development; 2013 May; 140(9):1924-35. PubMed ID: 23515473 [TBL] [Abstract][Full Text] [Related]
15. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Pillitteri LJ; Bogenschutz NL; Torii KU Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784 [TBL] [Abstract][Full Text] [Related]
16. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl. Fuentes S; Cañamero RC; Serna L Int J Dev Biol; 2012; 56(9):675-80. PubMed ID: 23124966 [TBL] [Abstract][Full Text] [Related]
17. Molecular control of stomatal development. Zoulias N; Harrison EL; Casson SA; Gray JE Biochem J; 2018 Jan; 475(2):441-454. PubMed ID: 29386377 [TBL] [Abstract][Full Text] [Related]
18. Stomatal development in Arabidopsis and grasses: differences and commonalities. Serna L Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077 [TBL] [Abstract][Full Text] [Related]
19. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Zhao H; Li X; Ma L Plant Signal Behav; 2012 Dec; 7(12):1556-60. PubMed ID: 23073001 [TBL] [Abstract][Full Text] [Related]
20. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update. Banerjee S; Roy S Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]