These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 39151338)
1. Natural and modified clays as low-cost and ecofriendly materials to remove salinomycin from environmental compartments. Hamdi S; Míguez-González A; Cela-Dablanca R; Barreiro A; Fernández-Sanjurjo MJ; Núñez-Delgado A; Álvarez-Rodríguez E J Environ Manage; 2024 Sep; 368():122158. PubMed ID: 39151338 [TBL] [Abstract][Full Text] [Related]
2. Experimental data and modeling of sulfadiazine adsorption onto raw and modified clays from Tunisia. Hamdi S; Mosbahi M; Issaoui M; Barreiro A; Cela-Dablanca R; Brahmi J; Tlili A; Jamoussi F; J Fernández-Sanjurjo M; Núñez-Delgado A; Álvarez-Rodríguez E; Gharbi-Khelifi H Environ Res; 2024 May; 248():118309. PubMed ID: 38301763 [TBL] [Abstract][Full Text] [Related]
3. Tetracycline adsorption/desorption by raw and activated Tunisian clays. Hamdi S; Gharbi-Khelifi H; Barreiro A; Mosbahi M; Cela-Dablanca R; Brahmi J; J Fernández-Sanjurjo M; Núñez-Delgado A; Issaoui M; Álvarez-Rodríguez E Environ Res; 2024 Feb; 242():117536. PubMed ID: 38000635 [TBL] [Abstract][Full Text] [Related]
4. Sorption and desorption of salinomycin sodium in clay, loamy sand, and sandy soils. Ramaswamy J; Prasher SO; Patel RM Environ Monit Assess; 2012 Sep; 184(9):5363-9. PubMed ID: 21931945 [TBL] [Abstract][Full Text] [Related]
5. Modelling the adsorption of mercury onto natural and aluminium pillared clays. Eloussaief M; Sdiri A; Benzina M Environ Sci Pollut Res Int; 2013 Jan; 20(1):469-79. PubMed ID: 22532118 [TBL] [Abstract][Full Text] [Related]
6. Azithromycin removal using pine bark, oak ash and mussel shell. Cela-Dablanca R; Barreiro A; Rodríguez-López L; Arias-Estévez M; Fernández-Sanjurjo M; Álvarez-Rodríguez E; Núñez-Delgado A Environ Res; 2024 Jul; 252(Pt 3):119048. PubMed ID: 38697595 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent. Chai JB; Au PI; Mubarak NM; Khalid M; Ng WP; Jagadish P; Walvekar R; Abdullah EC Environ Sci Pollut Res Int; 2020 Apr; 27(12):13949-13962. PubMed ID: 32036527 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of the adsorption and desorption process of selected natural Albanian clays toward methomyl and dimethoate pesticides. Isak N; Xhaxhiu K; Behrami E; Andoni A J Environ Manage; 2023 Nov; 346():118989. PubMed ID: 37717393 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Eloussaief M; Benzina M J Hazard Mater; 2010 Jun; 178(1-3):753-7. PubMed ID: 20189300 [TBL] [Abstract][Full Text] [Related]
10. Removal of phosphate from synthetic wastewater: A comparative study between both activated clays using an experimental design methodology. Yahya K; Ba M; Msadok I; Mlayah A; Srasra E; Hamdi N Water Environ Res; 2022 Nov; 94(11):e10800. PubMed ID: 36333275 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes. Marco-Brown JL; Gaigneaux EM; Torres Sánchez RM; Dos Santos Afonso M J Environ Sci Health B; 2019; 54(4):281-289. PubMed ID: 30755089 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of bifunctional nanostructured adsorbents based on anionic/cationic clays: effect of arrangement on simultaneous adsorption of cadmium and arsenate. Liñán-González AE; Aguilar-Aguilar A; Robledo-Cabrera A; Collins-Martínez VH; Flores-Cano JV; Ocampo-Perez R; Padilla-Ortega E Environ Sci Pollut Res Int; 2024 Jun; 31(28):40100-40116. PubMed ID: 37391564 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite. Liu YL; Walker HW; Lenhart JJ Chemosphere; 2019 Apr; 220():696-705. PubMed ID: 30611067 [TBL] [Abstract][Full Text] [Related]
14. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. Hacıosmanoğlu GG; Mejías C; Martín J; Santos JL; Aparicio I; Alonso E J Environ Manage; 2022 Sep; 317():115397. PubMed ID: 35660825 [TBL] [Abstract][Full Text] [Related]
15. Bio-based composite from chitosan waste and clay for effective removal of Congo red dye from contaminated water: Experimental studies and theoretical insights. Bellaj M; Naboulsi A; Aziz K; Regti A; El Himri M; El Haddad M; El Achaby M; Abourriche A; Gebrati L; Kurniawan TA; Aziz F Environ Res; 2024 Aug; 255():119089. PubMed ID: 38788787 [TBL] [Abstract][Full Text] [Related]
16. Removal of the Highly Toxic Anticoccidial Monensin Using Six Different Low-Cost Bio-Adsorbents. Hamdi S; Issaoui M; Hammami S; Míguez-González A; Cela-Dablanca R; Barreiro A; Núñez-Delgado A; Álvarez-Rodríguez E; Fernández-Sanjurjo MJ Toxics; 2024 Aug; 12(8):. PubMed ID: 39195708 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of per- and polyfluoroalkyl substances (PFAS) by ionic liquid-modified clays: Effect of clay composition and PFAS structure. Dong Q; Min X; Zhao Y; Wang Y J Colloid Interface Sci; 2024 Jan; 654(Pt B):925-934. PubMed ID: 37898076 [TBL] [Abstract][Full Text] [Related]
18. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. Momina ; Shahadat M; Isamil S RSC Adv; 2018 Jul; 8(43):24571-24587. PubMed ID: 35539168 [TBL] [Abstract][Full Text] [Related]
19. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution. Sartor LR; de Azevedo AC; Andrade GR Environ Technol; 2015; 36(5-8):786-95. PubMed ID: 25253565 [TBL] [Abstract][Full Text] [Related]
20. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals. Huo J; Min X; Wang Y Environ Res; 2021 Mar; 194():110685. PubMed ID: 33428913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]