These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39151347)

  • 1. An electrochemical aptamer-sensing strategy based on a Ti
    Zhao K; Zhang B; Cui X; Chao X; Song F; Chen H; He B
    Food Chem; 2024 Dec; 461():140828. PubMed ID: 39151347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical aptasensing strategy based on a multivariate polymertitanium-metal-organic framework for zearalenone analysis.
    Duan F; Rong F; Guo C; Chen K; Wang M; Zhang Z; Pettinari R; Zhou L; Du M
    Food Chem; 2022 Aug; 385():132654. PubMed ID: 35287107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework.
    Zhang Y; Li B; Wei X; Gu Q; Chen M; Zhang J; Mo S; Wang J; Xue L; Ding Y; Wu Q
    Mikrochim Acta; 2021 Aug; 188(8):286. PubMed ID: 34345968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone.
    Ji X; Yu C; Wen Y; Chen J; Yu Y; Zhang C; Gao R; Mu X; He J
    Biosens Bioelectron; 2019 Mar; 129():139-146. PubMed ID: 30690178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoS
    Huang H; Camarada MB; Wang D; Liao X; Xiong W; Du J; Xiong J; Hong Y
    Mikrochim Acta; 2021 Dec; 189(1):15. PubMed ID: 34873654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone.
    Lai H; Ming P; Wu M; Wang S; Sun D; Zhai H
    Food Chem; 2023 Oct; 423():136331. PubMed ID: 37182496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal-Organic Framework.
    Li W; Zhang X; Hu X; Shi Y; Liang N; Huang X; Wang X; Shen T; Zou X; Shi J
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5615-5623. PubMed ID: 35050582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical determination of zearalenone using a label-free competitive aptasensor.
    Azri FA; Eissa S; Zourob M; Chinnappan R; Sukor R; Yusof NA; Raston NHA; Alhoshani A; Jinap S
    Mikrochim Acta; 2020 Apr; 187(5):266. PubMed ID: 32279134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs.
    Kang M; Yao Y; Yuan B; Zhang S; Oderinde O; Zhang Z
    Food Chem; 2024 Mar; 437(Pt 1):137827. PubMed ID: 37897827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical sensor based on 2D Zn-MOFs and 2D C-Ti
    Yang L; Ding Y; Ma Y; Wen J; Wang J; Dai G; Mo F
    Food Chem; 2025 Jan; 462():140922. PubMed ID: 39213967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free electrochemical aptasensor based on a gold nanoparticle/carbon nanotube/metal-organic framework nanohybrid for ultrasensitive detection of streptomycin in milk samples.
    Hui Y; Yang D; Wang W; Liu Y; He C; Wang B
    Food Chem; 2023 Feb; 402():134150. PubMed ID: 36303374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel sandwich-type electrochemical immunosensor for sensitive detection of zearalenone using NG/PDDA/HNTs and Ti-MOF-KB composites for signal amplification.
    Jiang X; Mu Z; Wang J; Zhou J; Bai L
    Food Chem; 2024 Mar; 436():137704. PubMed ID: 37862986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled sandwich-type electrochemical immunosensor based on Ti
    Wu H; Zhang G; Yang X
    Mikrochim Acta; 2024 Aug; 191(9):565. PubMed ID: 39192061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA.
    Li J; Liu L; Ai Y; Liu Y; Sun H; Liang Q
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5500-5510. PubMed ID: 31939286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical aptasensor based on gold nanoparticle decorated Ti
    Yang X; Guo W; Umar A; Algadi H; Ibrahim AA; Zhao C; Ren Z; Wang L; Pei M
    Mikrochim Acta; 2023 May; 190(6):206. PubMed ID: 37162685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti
    Cheng J; Hu K; Liu Q; Liu Y; Yang H; Kong J
    Anal Bioanal Chem; 2021 Apr; 413(9):2543-2551. PubMed ID: 33576855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS
    Han Z; Tang Z; Jiang K; Huang Q; Meng J; Nie D; Zhao Z
    Biosens Bioelectron; 2020 Feb; 150():111894. PubMed ID: 31761484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling.
    Meng X; Gu H; Yi H; He Y; Chen Y; Sun W
    Anal Chim Acta; 2020 Aug; 1125():1-7. PubMed ID: 32674756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles-doped MXene heterostructure for ultrasensitive electrochemical detection of fumonisin B1 and ampicillin.
    Wang W; Yin Y; Gunasekaran S
    Mikrochim Acta; 2024 May; 191(5):294. PubMed ID: 38698253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C
    Chen Y; Liu X; Guo S; Cao J; Zhou J; Zuo J; Bai L
    Biomaterials; 2019 Sep; 216():119253. PubMed ID: 31202103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.