These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 39151526)
1. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Chen X; Li M; Su D Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526 [TBL] [Abstract][Full Text] [Related]
2. Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study. Chen X; Li M; Liang X; Su D Medicine (Baltimore); 2024 Jun; 103(24):e38513. PubMed ID: 38875420 [TBL] [Abstract][Full Text] [Related]
3. [Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model]. Zhang Y; Huang H; Yin L; Wang ZX; Lu SY; Wang XX; Xiang LL; Zhang Q; Zhang JL; Shan XH Zhonghua Zhong Liu Za Zhi; 2024 May; 46(5):428-437. PubMed ID: 38742356 [No Abstract] [Full Text] [Related]
4. Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2- Breast Cancer Quantified With 21-Gene Recurrence Score. Chen Y; Tang W; Liu W; Li R; Wang Q; Shen X; Gong J; Gu Y; Peng W J Magn Reson Imaging; 2023 Aug; 58(2):444-453. PubMed ID: 36440706 [TBL] [Abstract][Full Text] [Related]
5. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
7. Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI. Yang H; Wang W; Cheng Z; Zheng T; Cheng C; Cheng M; Wang Z Technol Cancer Res Treat; 2024; 23():15330338241288751. PubMed ID: 39431304 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-based model constructed from ultrasound radiomics and clinical features for predicting HER2 status in breast cancer patients with indeterminate (2+) immunohistochemical results. Yan M; Yao J; Zhang X; Xu D; Yang C Cancer Med; 2024 Feb; 13(3):e6946. PubMed ID: 38234171 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma. Xu A; Chu X; Zhang S; Zheng J; Shi D; Lv S; Li F; Weng X BMC Cancer; 2022 Aug; 22(1):872. PubMed ID: 35945526 [TBL] [Abstract][Full Text] [Related]
10. Use of MRI Radiomics Models in Evaluating the Low HER2 Expression in Breast Cancer. Li H; Hou Y; Xue LY; Fan WL; Gao BL; Yin XP Curr Med Imaging; 2024; 20():e15734056234429. PubMed ID: 38726785 [TBL] [Abstract][Full Text] [Related]
11. Discrimination between HER2-overexpressing, -low-expressing, and -zero-expressing statuses in breast cancer using multiparametric MRI-based radiomics. Zheng S; Yang Z; Du G; Zhang Y; Jiang C; Xu T; Li B; Wang D; Qiu Y; Lin D; Zhang X; Shen J Eur Radiol; 2024 Sep; 34(9):6132-6144. PubMed ID: 38363315 [TBL] [Abstract][Full Text] [Related]
12. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer. Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478 [TBL] [Abstract][Full Text] [Related]
13. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy. Liu HQ; Lin SY; Song YD; Mai SY; Yang YD; Chen K; Wu Z; Zhao HY Eur Radiol; 2023 Apr; 33(4):2965-2974. PubMed ID: 36418622 [TBL] [Abstract][Full Text] [Related]
14. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer. Bitencourt AGV; Gibbs P; Rossi Saccarelli C; Daimiel I; Lo Gullo R; Fox MJ; Thakur S; Pinker K; Morris EA; Morrow M; Jochelson MS EBioMedicine; 2020 Nov; 61():103042. PubMed ID: 33039708 [TBL] [Abstract][Full Text] [Related]
15. Prediction of lymphovascular invasion in invasive breast cancer based on clinical-MRI radiomics features. Zhang C; Zhou P; Li R; Li Z; Ouyang A BMC Med Imaging; 2024 Oct; 24(1):277. PubMed ID: 39415127 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. Zhang L; Zhou XX; Liu L; Liu AY; Zhao WJ; Zhang HX; Zhu YM; Kuai ZX J Magn Reson Imaging; 2023 Nov; 58(5):1590-1602. PubMed ID: 36661350 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of MRI Radiomics Models to Differentiate HER2-Zero, -Low, and -Positive Breast Cancer. Peng Y; Zhang X; Qiu Y; Li B; Yang Z; Huang J; Lin J; Zheng C; Hu L; Shen J AJR Am J Roentgenol; 2024 Apr; 222(4):e2330603. PubMed ID: 38265001 [No Abstract] [Full Text] [Related]
19. Radiomics Signatures Based on Multiparametric MRI for the Preoperative Prediction of the HER2 Status of Patients with Breast Cancer. Zhou J; Tan H; Li W; Liu Z; Wu Y; Bai Y; Fu F; Jia X; Feng A; Liu H; Wang M Acad Radiol; 2021 Oct; 28(10):1352-1360. PubMed ID: 32709582 [TBL] [Abstract][Full Text] [Related]
20. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]