These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39152235)
1. Impingement of binary nanodroplets on rough surfaces: a molecular dynamics study. Xue Y; Wang H; Huang S; Bie X; Wang G; Fang M Sci Rep; 2024 Aug; 14(1):19030. PubMed ID: 39152235 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces. Li R; Zhu P; Yin Z; Xu Y Langmuir; 2022 Jun; 38(22):7058-7066. PubMed ID: 35608995 [TBL] [Abstract][Full Text] [Related]
3. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study. Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016 [TBL] [Abstract][Full Text] [Related]
4. Vibration-Induced Pancake Bouncing of Impacting Droplets on Hydrophobic Surfaces. Ren H; Hu X; Wang J; Li N; Chen L Langmuir; 2024 Oct; 40(42):22338-22345. PubMed ID: 39380129 [TBL] [Abstract][Full Text] [Related]
5. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
6. Droplet impacting on pillared hydrophobic surfaces with different solid fractions. Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977 [TBL] [Abstract][Full Text] [Related]
7. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity. Guo C; Liu L; Yang R; Lu J; Liu S Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938 [TBL] [Abstract][Full Text] [Related]
8. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position. Zhu S; Ren H; Li X; Xiao Y; Li C Phys Chem Chem Phys; 2023 Feb; 25(6):4969-4979. PubMed ID: 36722908 [TBL] [Abstract][Full Text] [Related]
9. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio. Kim JH; Rothstein JP Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306 [TBL] [Abstract][Full Text] [Related]
10. Impact of nanodroplets on cone-textured surfaces. Liu H; Zhang J; Luo J; Wen D Phys Rev E; 2023 Jun; 107(6-2):065101. PubMed ID: 37464703 [TBL] [Abstract][Full Text] [Related]
11. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF; Lu G; Wang XD; Wang BB Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379 [TBL] [Abstract][Full Text] [Related]
12. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related]
13. Coalescence and Rebound Dynamics in Two Droplets Train Impacting on a Heterogeneous Wettability Surface. Zhang T; Li M; Dong F; Huang F; Chuyo K; Wu J Langmuir; 2024 Oct; 40(42):22190-22201. PubMed ID: 39395012 [TBL] [Abstract][Full Text] [Related]
14. Droplet Impact on Anisotropic Superhydrophobic Surfaces. Guo C; Zhao D; Sun Y; Wang M; Liu Y Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832 [TBL] [Abstract][Full Text] [Related]
15. How coalescing droplets jump. Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210 [TBL] [Abstract][Full Text] [Related]
16. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Shigorina E; Kordilla J; Tartakovsky AM Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900 [TBL] [Abstract][Full Text] [Related]
17. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study. Gao S; Liao Q; Liu W; Liu Z Langmuir; 2018 May; 34(20):5910-5917. PubMed ID: 29708343 [TBL] [Abstract][Full Text] [Related]
18. Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces. Wang YB; Wang YF; Gao SR; Yang YR; Wang XD; Chen M Langmuir; 2020 Aug; 36(31):9306-9316. PubMed ID: 32697096 [TBL] [Abstract][Full Text] [Related]
19. A new scaling number reveals droplet dynamics on vibratory surfaces. Song M; Zhao H; Wang T; Wang S; Wan J; Qin X; Wang Z J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2414-2420. PubMed ID: 34753623 [TBL] [Abstract][Full Text] [Related]
20. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]