These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 39152423)
1. Prediction of sepsis mortality in ICU patients using machine learning methods. Gao J; Lu Y; Ashrafi N; Domingo I; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):228. PubMed ID: 39152423 [TBL] [Abstract][Full Text] [Related]
2. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
4. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
5. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
6. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887 [TBL] [Abstract][Full Text] [Related]
7. Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China. Wang J; Yang Y; Gong X Sci Rep; 2024 Sep; 14(1):22281. PubMed ID: 39333659 [TBL] [Abstract][Full Text] [Related]
8. Transferability and interpretability of the sepsis prediction models in the intensive care unit. Chen Q; Li R; Lin C; Lai C; Chen D; Qu H; Huang Y; Lu W; Tang Y; Li L BMC Med Inform Decis Mak; 2022 Dec; 22(1):343. PubMed ID: 36581881 [TBL] [Abstract][Full Text] [Related]
9. A machine learning-based prediction of hospital mortality in mechanically ventilated ICU patients. Li H; Ashrafi N; Kang C; Zhao G; Chen Y; Pishgar M PLoS One; 2024; 19(9):e0309383. PubMed ID: 39231126 [TBL] [Abstract][Full Text] [Related]
10. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
11. Machine learning models predict triage levels, massive transfusion protocol activation, and mortality in trauma utilizing patients hemodynamics on admission. El-Menyar A; Naduvilekandy M; Asim M; Rizoli S; Al-Thani H Comput Biol Med; 2024 Sep; 179():108880. PubMed ID: 39018880 [TBL] [Abstract][Full Text] [Related]
12. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3. Rahman MS; Islam KR; Prithula J; Kumar J; Mahmud M; Alam MF; Reaz MBI; Alqahtani A; Chowdhury MEH BMC Med Inform Decis Mak; 2024 Sep; 24(1):249. PubMed ID: 39251962 [TBL] [Abstract][Full Text] [Related]
14. Evaluate prognostic accuracy of SOFA component score for mortality among adults with sepsis by machine learning method. Pan X; Xie J; Zhang L; Wang X; Zhang S; Zhuang Y; Lin X; Shi S; Shi S; Lin W BMC Infect Dis; 2023 Feb; 23(1):76. PubMed ID: 36747139 [TBL] [Abstract][Full Text] [Related]
15. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients. Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005 [TBL] [Abstract][Full Text] [Related]
16. INTERPRETABLE MACHINE LEARNING FOR PREDICTING RISK OF INVASIVE FUNGAL INFECTION IN CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT: A RETROSPECTIVE COHORT STUDY BASED ON MIMIC-IV DATABASE. Cao Y; Li Y; Wang M; Wang L; Fang Y; Wu Y; Liu Y; Liu Y; Hao Z; Kang H; Gao H Shock; 2024 Jun; 61(6):817-827. PubMed ID: 38407989 [TBL] [Abstract][Full Text] [Related]
17. Prediction of 30-day mortality for ICU patients with Sepsis-3. Yu Z; Ashrafi N; Li H; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):223. PubMed ID: 39118128 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage. Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097 [TBL] [Abstract][Full Text] [Related]
19. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
20. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]