These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39152895)
21. Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. Ma Z; Liu J; Liu Y; Zheng X; Tang K Int J Biol Macromol; 2021 Jan; 166():567-577. PubMed ID: 33144252 [TBL] [Abstract][Full Text] [Related]
22. Antibiofilm effect of green engineered silver nanoparticles fabricated from Artemisia scoporia extract on the expression of icaA and icaR genes against multidrug-resistant Staphylococcus aureus. Moulavi P; Noorbazargan H; Dolatabadi A; Foroohimanjili F; Tavakoli Z; Mirzazadeh S; Hashemi M; Ashrafi F J Basic Microbiol; 2019 Jul; 59(7):701-712. PubMed ID: 31032943 [TBL] [Abstract][Full Text] [Related]
24. Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens. Khan MH; Unnikrishnan S; Ramalingam K Appl Biochem Biotechnol; 2024 Apr; 196(4):2031-2052. PubMed ID: 37462813 [TBL] [Abstract][Full Text] [Related]
25. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Yang X; Niu Y; Fan Y; Zheng T; Fan J Int J Biol Macromol; 2024 Jun; 269(Pt 1):131928. PubMed ID: 38688339 [TBL] [Abstract][Full Text] [Related]
26. Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus. Jang H; Lim SH; Choi JS; Park Y Arch Pharm Res; 2015 Oct; 38(10):1906-12. PubMed ID: 25893431 [TBL] [Abstract][Full Text] [Related]
27. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Mekkawy AI; El-Mokhtar MA; Nafady NA; Yousef N; Hamad MA; El-Shanawany SM; Ibrahim EH; Elsabahy M Int J Nanomedicine; 2017; 12():759-777. PubMed ID: 28176951 [TBL] [Abstract][Full Text] [Related]
28. Green Synthesis of Silver Nanoparticles Using Huq MA Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098417 [TBL] [Abstract][Full Text] [Related]
29. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. Rahman AU; Khan AU; Yuan Q; Wei Y; Ahmad A; Ullah S; Khan ZUH; Shams S; Tariq M; Ahmad W J Photochem Photobiol B; 2019 Apr; 193():31-38. PubMed ID: 30802773 [TBL] [Abstract][Full Text] [Related]
30. Green Synthesized Silver Nanoparticles Using Lactobacillus Acidophilus as an Antioxidant, Antimicrobial, and Antibiofilm Agent Against Multi-drug Resistant Enteroaggregative Escherichia Coli. Abishad P; Vergis J; Unni V; Ram VP; Niveditha P; Yasur J; Juliet S; John L; Byrappa K; Nambiar P; Kurkure NV; Barbuddhe SB; Rawool DB Probiotics Antimicrob Proteins; 2022 Oct; 14(5):904-914. PubMed ID: 35715714 [TBL] [Abstract][Full Text] [Related]
31. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Thapa R; Bhagat C; Shrestha P; Awal S; Dudhagara P Ann Clin Microbiol Antimicrob; 2017 May; 16(1):39. PubMed ID: 28511708 [TBL] [Abstract][Full Text] [Related]
32. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. Bekhit M; Abu El-Naga MN; Sokary R; Fahim RA; El-Sawy NM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(10):1210-1217. PubMed ID: 32614255 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. Rafiq A; Zahid K; Qadir A; Khan MN; Khalid ZM; Ali N J Appl Microbiol; 2021 Jul; 131(1):124-134. PubMed ID: 33251642 [TBL] [Abstract][Full Text] [Related]
34. One-pot green synthesis and structural characterisation of silver nanoparticles using aqueous leaves extract of Singh D; Kumar V; Yadav E; Falls N; Singh M; Komal U; Verma A IET Nanobiotechnol; 2018 Sep; 12(6):748-756. PubMed ID: 30104448 [TBL] [Abstract][Full Text] [Related]
35. Construction and antibacterial activities of walnut green husk polysaccharide based silver nanoparticles (AgNPs). Wang G; Yang X; Chen X; Huang J; He R; Zhang R; Zhang Y Int J Biol Macromol; 2024 Sep; 276(Pt 2):133798. PubMed ID: 38992555 [TBL] [Abstract][Full Text] [Related]
36. Electron Beam-Supported Fabrication of Biocompatible Silver/iota-Carrageenan for Wound Healing Application. Sana SS; Raorane CJ; Raj V; Alagumalai K; Gangadhar L; Gupta VK; Kim SC; Kaushik AK ACS Appl Bio Mater; 2024 Jun; 7(6):3636-3648. PubMed ID: 38729923 [TBL] [Abstract][Full Text] [Related]
37. Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis. Wang R; Li R; Zheng P; Yang Z; Qian C; Wang Z; Qian S J Microbiol; 2023 May; 61(5):543-558. PubMed ID: 37052796 [TBL] [Abstract][Full Text] [Related]
38. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Mariadoss AVA; Ramachandran V; Shalini V; Agilan B; Franklin JH; Sanjay K; Alaa YG; Tawfiq MA; Ernest D Microb Pathog; 2019 Oct; 135():103609. PubMed ID: 31247255 [TBL] [Abstract][Full Text] [Related]
39. Silver nanoparticles green synthesis via cyanobacterium Phormidium sp.: characterization, wound healing, antioxidant, antibacterial, and anti-inflammatory activities. Younis NS; El Semary NA; Mohamed ME Eur Rev Med Pharmacol Sci; 2021 Apr; 25(7):3083-3096. PubMed ID: 33877672 [TBL] [Abstract][Full Text] [Related]
40. Effect of rice variety and reaction parameters on synthesis and antibacterial activity of silver nanoparticles. Suwan T; Khongkhunthian S; Sirithunyalug J; Okonogi S Drug Discov Ther; 2018; 12(5):267-274. PubMed ID: 30464157 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]