These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39153298)

  • 21. 2-Methylimidazole-doped nanozymes with enhanced laccase activity for the (+)-catechins detection in dairy products.
    Li M; Xie Y; Song D; Huang H; Li Y
    Talanta; 2023 Jan; 252():123853. PubMed ID: 35998448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism.
    Wu X; Cai C; Cen Q; Fu G; Lu X; Zheng H; Zhang Q; Cui X; Liu Y
    Int J Biol Macromol; 2024 Nov; 279(Pt 3):135272. PubMed ID: 39226979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laccase-mimicking Mn-Cu hybrid nanoflowers for paper-based visual detection of phenolic neurotransmitters and rapid degradation of dyes.
    Le TN; Le XA; Tran TD; Lee KJ; Kim MI
    J Nanobiotechnology; 2022 Aug; 20(1):358. PubMed ID: 35918697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoenzymatic Activity of Artificial-Natural Bienzyme Applied in Biodegradation of Methylene Blue and Accelerating Polymerization of Dopamine.
    Zheng G; Cui Y; Zhou Y; Jiang Z; Wang Q; Zhou M; Wang P; Yu Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56191-56204. PubMed ID: 34787400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines.
    Tabrizian P; Ma W; Bakr A; Rahaman MS
    J Colloid Interface Sci; 2019 Jan; 534():549-562. PubMed ID: 30253356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution.
    Pan L; Cao Y; Zang J; Huang Q; Wang L; Zhang Y; Fan S; Tang J; Xie Z
    Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31252570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal.
    Li H; Hou J; Duan L; Ji C; Zhang Y; Chen V
    J Hazard Mater; 2017 Sep; 338():93-101. PubMed ID: 28535481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent environmental applications of and development prospects for immobilized laccase: a review.
    Ren D; Wang Z; Jiang S; Yu H; Zhang S; Zhang X
    Biotechnol Genet Eng Rev; 2020 Oct; 36(2):81-131. PubMed ID: 33435852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LTP-assisted fabrication of laccase-like Cu-MOF nanozyme-encoded array sensor for identification and intelligent sensing of bioactive components in food.
    Liu C; Huang Q
    Biosens Bioelectron; 2024 Sep; 267():116784. PubMed ID: 39288708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of enzyme laccase and role of cosubstrate oxygen in enzymatic removal of phenol from water.
    Dasgupta S; Taylor KE; Bewtra JK; Biswas N
    Water Environ Res; 2007 Aug; 79(8):858-67. PubMed ID: 17824532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology.
    Singh J; Saharan V; Kumar S; Gulati P; Kapoor RK
    Crit Rev Biotechnol; 2018 Sep; 38(6):883-901. PubMed ID: 29281904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B
    Wang L; Liu Z; Yao L; Liu S; Wang Q; Qu H; Wu Y; Mao Y; Zheng L
    Small; 2024 Sep; 20(36):e2400629. PubMed ID: 38682737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation.
    J Hazard Mater; ; . PubMed ID: 31862355
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 35.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.