These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39154039)
1. Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas. Kudus K; Wagner MW; Namdar K; Bennett J; Nobre L; Tabori U; Hawkins C; Ertl-Wagner BB; Khalvati F Sci Rep; 2024 Aug; 14(1):19102. PubMed ID: 39154039 [TBL] [Abstract][Full Text] [Related]
2. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613 [TBL] [Abstract][Full Text] [Related]
4. Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis. Xu J; Lai M; Li S; Ye K; Li L; Hu Q; Ai R; Zhou J; Li J; Zhen J; Cai L; Shi C Clin Neurol Neurosurg; 2022 Nov; 222():107478. PubMed ID: 36244075 [TBL] [Abstract][Full Text] [Related]
5. Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers. Haldar D; Kazerooni AF; Arif S; Familiar A; Madhogarhia R; Khalili N; Bagheri S; Anderson H; Shaikh IS; Mahtabfar A; Kim MC; Tu W; Ware J; Vossough A; Davatzikos C; Storm PB; Resnick A; Nabavizadeh A Neoplasia; 2023 Feb; 36():100869. PubMed ID: 36566592 [TBL] [Abstract][Full Text] [Related]
6. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
7. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535 [TBL] [Abstract][Full Text] [Related]
8. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669 [TBL] [Abstract][Full Text] [Related]
9. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
10. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features. Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755 [TBL] [Abstract][Full Text] [Related]
11. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
12. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences. Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. Han Y; Xie Z; Zang Y; Zhang S; Gu D; Zhou M; Gevaert O; Wei J; Li C; Chen H; Du J; Liu Z; Dong D; Tian J; Zhou D J Neurooncol; 2018 Nov; 140(2):297-306. PubMed ID: 30097822 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Radiomics Analyses Based on Different Magnetic Resonance Imaging Sequences in Grading and Molecular Genomic Typing of Glioma. Huang WY; Wen LH; Wu G; Hu MZ; Zhang CC; Chen F; Zhao JN J Comput Assist Tomogr; 2021 Jan-Feb 01; 45(1):110-120. PubMed ID: 33475317 [TBL] [Abstract][Full Text] [Related]
16. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas. Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Yu J; Shi Z; Lian Y; Li Z; Liu T; Gao Y; Wang Y; Chen L; Mao Y Eur Radiol; 2017 Aug; 27(8):3509-3522. PubMed ID: 28004160 [TBL] [Abstract][Full Text] [Related]
18. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. Ma A; Yan X; Qu Y; Wen H; Zou X; Liu X; Lu M; Mo J; Wen Z BMC Med Imaging; 2024 Apr; 24(1):85. PubMed ID: 38600452 [TBL] [Abstract][Full Text] [Related]
19. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
20. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]