These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39154335)

  • 1. Establishing CRISPR-Cas9 in the sexually dimorphic moss, Ceratodon purpureus.
    Tavernier EK; Perroud PF; Lockwood E; Nogué F; McDaniel SF
    Plant J; 2024 Aug; ():. PubMed ID: 39154335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo assembly and comparative analysis of the Ceratodon purpureus transcriptome.
    Szövényi P; Perroud PF; Symeonidi A; Stevenson S; Quatrano RS; Rensing SA; Cuming AC; McDaniel SF
    Mol Ecol Resour; 2015 Jan; 15(1):203-15. PubMed ID: 24862584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 Genome Editing in the Moss Physcomitrium (Formerly Physcomitrella) patens.
    Wu SZ; Ryken SE; Bezanilla M
    Curr Protoc; 2023 Apr; 3(4):e725. PubMed ID: 37021953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomere Length Variation in Model Bryophytes.
    Valeeva LR; Sannikova AV; Shafigullina NR; Abdulkina LR; Sharipova MR; Shakirov EV
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens.
    Collonnier C; Epert A; Mara K; Maclot F; Guyon-Debast A; Charlot F; White C; Schaefer DG; Nogué F
    Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A blueprint for gene function analysis through Base Editing in the model plant Physcomitrium (Physcomitrella) patens.
    Guyon-Debast A; Alboresi A; Terret Z; Charlot F; Berthier F; Vendrell-Mir P; Casacuberta JM; Veillet F; Morosinotto T; Gallois JL; Nogué F
    New Phytol; 2021 May; 230(3):1258-1272. PubMed ID: 33421132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and evolutionary diversification of the phospholipase D gene family in mosses.
    Zhao J; Pu X; Li W; Li M
    Front Genet; 2022; 13():1015393. PubMed ID: 36313445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and modular CRISPR-Cas9 vector system for
    Mallett DR; Chang M; Cheng X; Bezanilla M
    Plant Direct; 2019 Sep; 3(9):e00168. PubMed ID: 31523744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous and endogenous
    Zheng X; Zheng P; Sun J; Kun Z; Ma Y
    Fungal Biol Biotechnol; 2018; 5():2. PubMed ID: 29456867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System.
    Nomura T; Sakurai T; Osakabe Y; Osakabe K; Sakakibara H
    Plant Cell Physiol; 2016 Dec; 57(12):2600-2610. PubMed ID: 27986915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life history variation in gametophyte populations of the moss Ceratodon purpureus (Ditrichaceae).
    Shaw J; Beer SC
    Am J Bot; 1999 Apr; 86(4):512-21. PubMed ID: 10205071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physcomitrella patens and Ceratodon purpureus, mosses as model organisms in photosynthesis studies.
    Thornton LE; Keren N; Ohad I; Pakrasi HB
    Photosynth Res; 2005; 83(1):87-96. PubMed ID: 16143910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens.
    Trogu S; Ermert AL; Stahl F; Nogué F; Gans T; Hughes J
    Plant Mol Biol; 2021 Nov; 107(4-5):327-336. PubMed ID: 33346897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of CRISPR-Cas9 genome editing system in Talaromyces marneffei.
    Zhang X; Hu X; Jan S; Rasheed SM; Zhang Y; Du M; Yang E
    Microb Pathog; 2021 May; 154():104822. PubMed ID: 33727171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato.
    Perroud PF; Guyon-Debast A; Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Gallois JL; Nogué F
    Plant Sci; 2022 Mar; 316():111162. PubMed ID: 35151447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon.
    Nieto-Lugilde M; Werner O; McDaniel SF; Koutecký P; Kučera J; Rizk SM; Ros RM
    Am J Bot; 2018 Jun; 105(6):1009-1020. PubMed ID: 29957852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales).
    Slate ML; Rosenstiel TN; Eppley SM
    Ann Bot; 2017 Nov; 120(5):845-854. PubMed ID: 28981564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SpRY Cas9 variant release the PAM sequence constraint for genome editing in the model plant Physcomitrium patens.
    Calbry J; Goudounet G; Charlot F; Guyon-Debast A; Perroud PF; Nogué F
    Transgenic Res; 2024 Apr; 33(1-2):67-74. PubMed ID: 38573428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
    Port F; Chen HM; Lee T; Bullock SL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.