These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39154443)
1. Low blue-hazard white-light emission based on color-tunable triplet-triplet annihilation upconversion. Dong Y; Shi Y; Chen S; Guo C; Zheng D; Gou H; Wan S; Ye C J Colloid Interface Sci; 2025 Jan; 677(Pt B):504-512. PubMed ID: 39154443 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Triplet-Triplet Annihilation Upconversion: From Molecular Design to Present Applications. Zeng L; Huang L; Han J; Han G Acc Chem Res; 2022 Sep; 55(18):2604-2615. PubMed ID: 36074952 [TBL] [Abstract][Full Text] [Related]
3. High-efficiency triplet-triplet annihilation upconversion microemulsion with facile preparation and decent air tolerance. Zuo R; Ye Z; Liang H; Huo Y; Ji S Photochem Photobiol Sci; 2024 Jul; 23(7):1309-1321. PubMed ID: 38839722 [TBL] [Abstract][Full Text] [Related]
4. A stimuli responsive triplet-triplet annihilation upconversion system and its application as a ratiometric sensor for Fe Chen S; Chen F; Han P; Ye C; Huang S; Xu L; Wang X; Song Y RSC Adv; 2019 Nov; 9(62):36410-36415. PubMed ID: 35540611 [TBL] [Abstract][Full Text] [Related]
5. Optimizing the Distance between Upconversion Thin Films and Silver Nanoprisms for the Design of a High-Performance Plasmonic Triplet-Triplet Annihilation Upconversion System. Honda J; Sugawa K; Fukumura S; Katoh R; Tahara H; Otsuki J Langmuir; 2023 Nov; 39(45):16138-16150. PubMed ID: 37922159 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet-Triplet Annihilation Upconversion. He Q; Wei L; He C; Yang C; Wu W Molecules; 2024 May; 29(10):. PubMed ID: 38792064 [TBL] [Abstract][Full Text] [Related]
7. Pd-Porphyrin Oligomers Sensitized for Green-to-Blue Photon Upconversion: The More the Better? Xun Z; Zeng Y; Chen J; Yu T; Zhang X; Yang G; Li Y Chemistry; 2016 Jun; 22(25):8654-62. PubMed ID: 27143644 [TBL] [Abstract][Full Text] [Related]
8. Red Light Activation of Ru(II) Polypyridyl Prodrugs via Triplet-Triplet Annihilation Upconversion: Feasibility in Air and through Meat. Askes SH; Meijer MS; Bouwens T; Landman I; Bonnet S Molecules; 2016 Nov; 21(11):. PubMed ID: 27809290 [TBL] [Abstract][Full Text] [Related]
9. Photochemically deoxygenating gels for triplet-triplet annihilation photon-upconversion performed under air. Zhou H; Lin J; Wan S; Lu W Phys Chem Chem Phys; 2022 Dec; 24(47):29151-29158. PubMed ID: 36444712 [TBL] [Abstract][Full Text] [Related]
10. Triplet-Triplet Annihilation Upconversion from Red to Blue Light Using a TADF Sensitizer Based Polymer. Li L; Kamal S; Polgar AM; Hudson ZM J Phys Chem B; 2024 Sep; 128(37):8997-9004. PubMed ID: 39231250 [TBL] [Abstract][Full Text] [Related]
11. Color-tunable organic light-emitting diodes with vertically stacked blue, green, and red colors for lighting and display applications. Lee H; Cho H; Byun CW; Han JH; Kwon BH; Choi S; Lee J; Cho NS Opt Express; 2018 Jul; 26(14):18351-18361. PubMed ID: 30114016 [TBL] [Abstract][Full Text] [Related]
12. Triplet-triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. Wei Y; Xian H; Lv X; Ni F; Cao X; Yang C Mater Horiz; 2021 Feb; 8(2):606-611. PubMed ID: 34821277 [TBL] [Abstract][Full Text] [Related]
14. Polymer-Based White-Light-Emitting Electrochemical Cells with Very High Color-Rendering Index Based on Blue-Green Fluorescent Polyfluorenes and Red-Phosphorescent Iridium Complexes. Nishikitani Y; Cho T; Uchida S; Nishimura S; Oyaizu K; Nishide H Chempluschem; 2018 May; 83(5):463-469. PubMed ID: 31957353 [TBL] [Abstract][Full Text] [Related]
15. Triplet-Triplet Annihilation Upconversion in a MOF with Acceptor-Filled Channels. Gharaati S; Wang C; Förster C; Weigert F; Resch-Genger U; Heinze K Chemistry; 2020 Jan; 26(5):1003-1007. PubMed ID: 31670422 [TBL] [Abstract][Full Text] [Related]
16. Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives. Lim H; Woo SJ; Ha YH; Kim YH; Kim JJ Adv Mater; 2022 Jan; 34(1):e2100161. PubMed ID: 34687094 [TBL] [Abstract][Full Text] [Related]
17. Highly Effective Near-Infrared Activating Triplet-Triplet Annihilation Upconversion for Photoredox Catalysis. Huang L; Wu W; Li Y; Huang K; Zeng L; Lin W; Han G J Am Chem Soc; 2020 Oct; 142(43):18460-18470. PubMed ID: 33074671 [TBL] [Abstract][Full Text] [Related]