These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39154470)
1. Hexavalent chromium uptake in rice (Oryza sativa L.) mediated by sulfate and phosphate transporters OsSultr1;2 and OsPht1;1. Li J; Xie W; Qi H; Sun S; Deng T; Tang Y; Qiu R J Hazard Mater; 2024 Oct; 478():135559. PubMed ID: 39154470 [TBL] [Abstract][Full Text] [Related]
2. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Sun S; Gu M; Cao Y; Huang X; Zhang X; Ai P; Zhao J; Fan X; Xu G Plant Physiol; 2012 Aug; 159(4):1571-81. PubMed ID: 22649273 [TBL] [Abstract][Full Text] [Related]
3. Cr(VI) behaves differently than Cr(III) in the uptake, translocation and detoxification in rice roots. Riaz A; Qin Y; Zheng Q; Chen X; Jiang W; Riaz B; Xiao N; Wu X; Qiu X; Xu J; Chen G; Chen ZH; Deng F; Zeng F Sci Total Environ; 2024 Oct; 948():174736. PubMed ID: 39029762 [TBL] [Abstract][Full Text] [Related]
4. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes. Chang MX; Gu M; Xia YW; Dai XL; Dai CR; Zhang J; Wang SC; Qu HY; Yamaji N; Feng Ma J; Xu GH Plant Physiol; 2019 Feb; 179(2):656-670. PubMed ID: 30567970 [TBL] [Abstract][Full Text] [Related]
5. Regulation Network of Sucrose Metabolism in Response to Trivalent and Hexavalent Chromium in Feng YX; Yu XZ; Mo CH; Lu CJ J Agric Food Chem; 2019 Sep; 67(35):9738-9748. PubMed ID: 31411877 [TBL] [Abstract][Full Text] [Related]
6. The transcription factor OsWRKY10 inhibits phosphate uptake via suppressing OsPHT1;2 expression under phosphate-replete conditions in rice. Wang S; Xu T; Chen M; Geng L; Huang Z; Dai X; Qu H; Zhang J; Li H; Gu M; Xu G J Exp Bot; 2023 Feb; 74(3):1074-1089. PubMed ID: 36402551 [TBL] [Abstract][Full Text] [Related]
7. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. Zhang J; Gu M; Liang R; Shi X; Chen L; Hu X; Wang S; Dai X; Qu H; Li H; Xu G New Phytol; 2021 Feb; 229(3):1598-1614. PubMed ID: 32936937 [TBL] [Abstract][Full Text] [Related]
8. The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice. Ye Y; Yuan J; Chang X; Yang M; Zhang L; Lu K; Lian X PLoS One; 2015; 10(5):e0126186. PubMed ID: 25970642 [TBL] [Abstract][Full Text] [Related]
9. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Ai P; Sun S; Zhao J; Fan X; Xin W; Guo Q; Yu L; Shen Q; Wu P; Miller AJ; Xu G Plant J; 2009 Mar; 57(5):798-809. PubMed ID: 18980647 [TBL] [Abstract][Full Text] [Related]
10. Role of cytochrome c in modulating chromium-induced oxidative stress in Oryza sativa. Yu XZ; Lu CJ; Li YH Environ Sci Pollut Res Int; 2018 Sep; 25(27):27639-27649. PubMed ID: 30056539 [TBL] [Abstract][Full Text] [Related]
11. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Jia H; Ren H; Gu M; Zhao J; Sun S; Zhang X; Chen J; Wu P; Xu G Plant Physiol; 2011 Jul; 156(3):1164-75. PubMed ID: 21502185 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. Dubey S; Misra P; Dwivedi S; Chatterjee S; Bag SK; Mantri S; Asif MH; Rai A; Kumar S; Shri M; Tripathi P; Tripathi RD; Trivedi PK; Chakrabarty D; Tuli R BMC Genomics; 2010 Nov; 11():648. PubMed ID: 21092124 [TBL] [Abstract][Full Text] [Related]
13. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. Dai C; Dai X; Qu H; Men Q; Liu J; Yu L; Gu M; Xu G Plant Physiol; 2022 Mar; 188(4):2272-2288. PubMed ID: 35088867 [TBL] [Abstract][Full Text] [Related]
14. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: Insights from hydroponic and soil cultivation. Xu B; Wang F; Zhang Q; Lan Q; Liu C; Guo X; Cai Q; Chen Y; Wang G; Ding J Ecotoxicol Environ Saf; 2018 Oct; 162():51-58. PubMed ID: 29960914 [TBL] [Abstract][Full Text] [Related]
15. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Zhang F; Sun Y; Pei W; Jain A; Sun R; Cao Y; Wu X; Jiang T; Zhang L; Fan X; Chen A; Shen Q; Xu G; Sun S Plant J; 2015 May; 82(4):556-69. PubMed ID: 25702710 [TBL] [Abstract][Full Text] [Related]
16. Silicon Palliates Chromium Toxicity through the Formation of Root Hairs in Rice (Oryza sativa) Mediated by GSH and IAA. Tripathi DK; Rai P; Kandhol N; Kumar A; Sahi S; Corpas FJ; Sharma S; Singh VP Plant Cell Physiol; 2023 Jan; 63(12):1943-1953. PubMed ID: 36264202 [TBL] [Abstract][Full Text] [Related]
17. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Wang X; Wang Y; Piñeros MA; Wang Z; Wang W; Li C; Wu Z; Kochian LV; Wu P Plant Cell Environ; 2014 May; 37(5):1159-70. PubMed ID: 24344809 [TBL] [Abstract][Full Text] [Related]
18. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis. Yu XZ; Fan WJ; Lin YJ; Zhang FF; Gupta DK Ecotoxicology; 2018 Apr; 27(3):325-335. PubMed ID: 29404866 [TBL] [Abstract][Full Text] [Related]
19. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. Zhang L; Hu B; Li W; Che R; Deng K; Li H; Yu F; Ling H; Li Y; Chu C New Phytol; 2014 Mar; 201(4):1183-1191. PubMed ID: 24491113 [TBL] [Abstract][Full Text] [Related]
20. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]