These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3915455)

  • 1. Photic influences on the developing mammal.
    Reppert SM; Duncan MJ; Goldman BD
    Ciba Found Symp; 1985; 117():116-28. PubMed ID: 3915455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal communication of circadian phase to the developing mammal.
    Reppert SM; Weaver DR; Rivkees SA
    Psychoneuroendocrinology; 1988; 13(1-2):63-78. PubMed ID: 3287418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily and photoperiodic melatonin binding changes in the suprachiasmatic nuclei, paraventricular thalamic nuclei, and pars tuberalis of the female Siberian hamster (Phodopus sungorus).
    Recio J; Pévet P; Vivien-Roels B; Míguez JM; Masson-Pévet M
    J Biol Rhythms; 1996 Dec; 11(4):325-32. PubMed ID: 8946260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal entrainment of the developing circadian system in the Siberian hamster (Phodopus sungorus).
    Duffield GE; Ebling FJ
    J Biol Rhythms; 1998 Aug; 13(4):315-29. PubMed ID: 9711507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system.
    Reppert SM; Schwartz WJ
    J Neurosci; 1986 Sep; 6(9):2724-9. PubMed ID: 3746430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal input to the suprachiasmatic nucleus before and after puberty in Djungarian hamsters.
    Yellon SM; Thorn KJ; Buchanan KL; Kirby MA
    Brain Res Bull; 1993; 32(1):29-33. PubMed ID: 7686436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian hamster encodes both daily and seasonal time.
    Nuesslein-Hildesheim B; O'Brien JA; Ebling FJ; Maywood ES; Hastings MH
    Eur J Neurosci; 2000 Aug; 12(8):2856-64. PubMed ID: 10971628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of circadian phase in developing gray short-tailed opossums: mother vs. environment.
    Rivkees SA; Reppert SM
    Am J Physiol; 1990 Sep; 259(3 Pt 1):E384-8. PubMed ID: 1698034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct in utero perception of light by the mammalian fetus.
    Weaver DR; Reppert SM
    Brain Res Dev Brain Res; 1989 May; 47(1):151-5. PubMed ID: 2736762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced c-Fos expression in the SCN and behavioural phase shifts of Djungarian hamsters with a delayed activity onset.
    Schöttner K; Vuillez P; Challet E; Pévet P; Weinert D
    Chronobiol Int; 2015 Jun; 32(5):596-607. PubMed ID: 25938796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily exposure to cold phase-shifts the circadian clock of neonatal rats in vivo.
    Yoshikawa T; Matsuno A; Yamanaka Y; Nishide SY; Honma S; Honma K
    Eur J Neurosci; 2013 Feb; 37(3):491-7. PubMed ID: 23167790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian alignment in a foster mother improves the offspring's pathological phenotype.
    Olejníková L; Polidarová L; Behuliak M; Sládek M; Sumová A
    J Physiol; 2018 Dec; 596(23):5757-5775. PubMed ID: 29748957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythm and effects of light on cAMP content of the dwarf hamster suprachiasmatic nucleus.
    Reuss S; Rimoldi S
    Neurosci Lett; 1998 Jan; 241(2-3):131-4. PubMed ID: 9507938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental study in the circadian clock of the golden hamster: a putative role of astrocytes.
    Lavialle M; Servière J
    Brain Res Dev Brain Res; 1995 May; 86(1-2):275-82. PubMed ID: 7656420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.