These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3DTINC: Time-Equivariant Non-Contrastive Learning for Predicting Disease Progression From Longitudinal OCTs. Emre T; Chakravarty A; Rivail A; Lachinov D; Leingang O; Riedl S; Mai J; Scholl HPN; Sivaprasad S; Rueckert D; Lotery A; Schmidt-Erfurth U; Bogunovic H IEEE Trans Med Imaging; 2024 Sep; 43(9):3200-3210. PubMed ID: 38656867 [TBL] [Abstract][Full Text] [Related]
3. End-to-End Deep Learning Model for Predicting Treatment Requirements in Neovascular AMD From Longitudinal Retinal OCT Imaging. Romo-Bucheli D; Erfurth US; Bogunovic H IEEE J Biomed Health Inform; 2020 Dec; 24(12):3456-3465. PubMed ID: 32750929 [TBL] [Abstract][Full Text] [Related]
4. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
6. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
7. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images. Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854 [TBL] [Abstract][Full Text] [Related]
8. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
9. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
10. Self-supervised iterative refinement learning for macular OCT volumetric data classification. Qiu J; Sun Y Comput Biol Med; 2019 Aug; 111():103327. PubMed ID: 31302456 [TBL] [Abstract][Full Text] [Related]
11. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
12. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2009; 9(13):1-22. PubMed ID: 23074517 [TBL] [Abstract][Full Text] [Related]
13. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans. Moradi M; Chen Y; Du X; Seddon JM Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964 [TBL] [Abstract][Full Text] [Related]
14. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks. Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802 [TBL] [Abstract][Full Text] [Related]
16. A new intelligent system based deep learning to detect DME and AMD in OCT images. Gueddena Y; Aboudi N; Zgolli H; Mabrouk S; Sidibe D; Tabia H; Khlifa N Int Ophthalmol; 2024 Apr; 44(1):191. PubMed ID: 38653842 [TBL] [Abstract][Full Text] [Related]
17. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423 [TBL] [Abstract][Full Text] [Related]
18. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
20. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images. Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]