These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 39155103)
1. Hydrogen-bond organic-framework-based electrochemical sensor for highly sensitive determination of trace cadmium ions in environmental and e-cigarette samples. Zuo Z; Liu K; Wang C; He S; Yang F; Chang F; Chen WT; Hu G Anal Chim Acta; 2024 Sep; 1321():343038. PubMed ID: 39155103 [TBL] [Abstract][Full Text] [Related]
2. An effective procedure used metal-organic framework for determination of cadmium ions in real tap water and human blood plasma samples. Sari AAA; Alzahrani SO; Alatawi ISS; Aljohani MM; Shah R; Saad FA; Khalil MA; El-Metwaly NM Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124989. PubMed ID: 39154403 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional graphene/amino-functionalized metal-organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II). Huo D; Zhang Y; Li N; Ma W; Liu H; Xu G; Li Z; Yang M; Hou C Anal Bioanal Chem; 2022 Feb; 414(4):1575-1586. PubMed ID: 34988587 [TBL] [Abstract][Full Text] [Related]
4. A new thiacalix[4]arene-based metal-organic framework as an efficient electrochemical sensor for trace detection of Cd Ma L; Pei WY; Yang J; Ma JF Food Chem; 2024 May; 441():138352. PubMed ID: 38199098 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional porous high boron-nitrogen-doped carbon for the ultrasensitive electrochemical detection of trace heavy metals in food samples. Huang R; Lv J; Chen J; Zhu Y; Zhu J; Wågberg T; Hu G J Hazard Mater; 2023 Jan; 442():130020. PubMed ID: 36155296 [TBL] [Abstract][Full Text] [Related]
6. Star-shaped porous nitrogen-doped metal-organic framework carbon as an electrochemical platform for sensitive determination of Cd(II) in environmental and tobacco samples. Huang R; Zhang K; Sun H; Zhang D; Zhu J; Zhou S; Li W; Li Y; Wang C; Jia X; Wågberg T; Hu G Anal Chim Acta; 2022 Oct; 1228():340309. PubMed ID: 36127007 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Yao Y; Wu H; Ping J Food Chem; 2019 Feb; 274():8-15. PubMed ID: 30373012 [TBL] [Abstract][Full Text] [Related]
9. Modification of gold surface by electrosynthesized mono aza crown ether substituted catechol-terminated alkane dithiol and its application as a new electrochemical sensor for trace detection of cadmium ions. Dehdashtian S; Shamsipur M Colloids Surf B Biointerfaces; 2018 Nov; 171():494-500. PubMed ID: 30081381 [TBL] [Abstract][Full Text] [Related]
10. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Xu RX; Yu XY; Gao C; Jiang YJ; Han DD; Liu JH; Huang XJ Anal Chim Acta; 2013 Aug; 790():31-8. PubMed ID: 23870406 [TBL] [Abstract][Full Text] [Related]
11. Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Pizarro J; Segura R; Tapia D; Navarro F; Fuenzalida F; Jesús Aguirre M Food Chem; 2020 Aug; 321():126682. PubMed ID: 32278274 [TBL] [Abstract][Full Text] [Related]
12. Determination of Lead with a Copper-Based Electrochemical Sensor. Kang W; Pei X; Rusinek CA; Bange A; Haynes EN; Heineman WR; Papautsky I Anal Chem; 2017 Mar; 89(6):3345-3352. PubMed ID: 28256823 [TBL] [Abstract][Full Text] [Related]
13. A stack-up electrochemical device based on metal-organic framework modified carbon paper for ultra-trace lead and cadmium ions detection. Pang YH; Yang QY; Jiang R; Wang YY; Shen XF Food Chem; 2023 Jan; 398():133822. PubMed ID: 35961169 [TBL] [Abstract][Full Text] [Related]
14. Nanocellulosic fiber-modified carbon paste electrode for ultra trace determination of Cd (II) and Pb (II) in aqueous solution. Rajawat DS; Kardam A; Srivastava S; Satsangee SP Environ Sci Pollut Res Int; 2013 May; 20(5):3068-76. PubMed ID: 23054765 [TBL] [Abstract][Full Text] [Related]
15. Detection of cadmium heavy metal ions using a nanostructured green sensor in food, biological and environmental samples. Hormozi Jangi S; Khoobi A Food Chem; 2024 Nov; 458():140307. PubMed ID: 38970963 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical detection of heavy metal ions in water. Ding Q; Li C; Wang H; Xu C; Kuang H Chem Commun (Camb); 2021 Jul; 57(59):7215-7231. PubMed ID: 34223844 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous electrochemical sensing of heavy metal ions (Zn Mirzaei Karazan Z; Roushani M; Jafar Hoseini S Food Chem; 2024 Jun; 442():138500. PubMed ID: 38252987 [TBL] [Abstract][Full Text] [Related]
18. Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition. Chai X; Zhang L; Tian Y Anal Chem; 2014 Nov; 86(21):10668-73. PubMed ID: 25272162 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Theerthagiri S; Rajkannu P; Senthil Kumar P; Peethambaram P; Ayyavu C; Rasu R; Kannaiyan D Food Chem Toxicol; 2022 Sep; 167():113313. PubMed ID: 35872257 [TBL] [Abstract][Full Text] [Related]
20. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples. Pérez-Ràfols C; Serrano N; Díaz-Cruz JM; Ariño C; Esteban M Talanta; 2015 Nov; 144():569-73. PubMed ID: 26452863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]