These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39155106)

  • 1. Non-monotonic variation in the streaming potential in polyelectrolyte grafted nanochannels mediated by ion partitioning effects.
    Patwari A; Kumar A; Bakli C; Chakraborty S
    Anal Chim Acta; 2024 Sep; 1321():342997. PubMed ID: 39155106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect.
    Poddar A; Maity D; Bandopadhyay A; Chakraborty S
    Soft Matter; 2016 Jul; 12(27):5968-78. PubMed ID: 27306568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.
    Jian Y; Li F; Liu Y; Chang L; Liu Q; Yang L
    Colloids Surf B Biointerfaces; 2017 Aug; 156():405-413. PubMed ID: 28551575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing blue energy: the role of ion partitioning in nanochannel systems.
    Mehta SK; Deb D; Nandy A; Shen AQ; Mondal PK
    Phys Chem Chem Phys; 2024 Jul; 26(30):20550-20561. PubMed ID: 39036903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
    Khatibi M; Ashrafizadeh SN; Sadeghi A
    Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry.
    Heydari A; Khatibi M; Ashrafizadeh SN
    Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-monotonic variation of flow strength in nanochannels grafted with end-charged polyelectrolyte layers.
    Wu P; Sun T; Jiang X
    RSC Adv; 2022 Jan; 12(7):4061-4071. PubMed ID: 35425443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer.
    Ganjizade A; Sadeghi A; Ashrafizadeh SN
    Colloids Surf B Biointerfaces; 2018 Oct; 170():129-135. PubMed ID: 29894833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels.
    Zheng J; Jian Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field.
    Khatibi M; Ashrafizadeh SN
    Anal Chem; 2023 Dec; 95(49):18188-18198. PubMed ID: 38019778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density.
    Sin JS; Kim UH
    Phys Chem Chem Phys; 2018 Sep; 20(35):22961-22971. PubMed ID: 30156252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels.
    Wang Z; Jian Y
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Maheedhara RS; Sachar HS; Jing H; Das S
    J Phys Chem B; 2018 Jul; 122(29):7450-7461. PubMed ID: 29969567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.