These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 3915511)
1. Deep-heating characteristics of an RF capacitive heating device. Kato H; Hiraoka M; Nakajima T; Ishida T Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511 [TBL] [Abstract][Full Text] [Related]
2. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8). Song CW; Rhee JG; Lee CK; Levitt SH Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735 [TBL] [Abstract][Full Text] [Related]
3. Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating. Rhee JG; Lee CK; Osborn J; Levitt SH; Song CW Int J Radiat Oncol Biol Phys; 1991 May; 20(5):1009-15. PubMed ID: 2022500 [TBL] [Abstract][Full Text] [Related]
4. Present and future status of noninvasive selective deep heating using RF in hyperthermia. Kato H; Ishida T Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321 [TBL] [Abstract][Full Text] [Related]
5. Experimental and clinical evaluation of a prototype hyperthermia system. Uozumi H; Baba Y; Yasunaga T; Takahashi M Radiat Med; 1987; 5(4):142-50. PubMed ID: 3321198 [TBL] [Abstract][Full Text] [Related]
6. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields. Raganella L; Banci G; Vannucci I; Franconi C; Tiberio CA IEEE Trans Biomed Eng; 1989 Nov; 36(11):1124-32. PubMed ID: 2807321 [TBL] [Abstract][Full Text] [Related]
7. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry. Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M Cancer; 1987 Jul; 60(1):121-7. PubMed ID: 3581026 [TBL] [Abstract][Full Text] [Related]
8. Experimental use of extensive pre-cooling of subcutaneous fatty tissues in radiofrequency capacitive heating. van Rhoon GC; van der Zee J; Broekmeyer-Reurink MP; Kansen PJ; Kuijs AE; Visser AG; Reinhold HS Adv Exp Med Biol; 1990; 267():305-10. PubMed ID: 2088047 [No Abstract] [Full Text] [Related]
9. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation. Kim KS; Hernandez D; Lee SY Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058 [TBL] [Abstract][Full Text] [Related]
10. Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Tanaka R; Kim CH; Yamada N; Saito Y Neurosurgery; 1987 Oct; 21(4):478-83. PubMed ID: 3317106 [TBL] [Abstract][Full Text] [Related]
11. Heating properties of a new hyperthermia system for deep tumors without contact. Yokoyama K; Kato K; Igarashi W; Shindo Y; Kubo M; Takahashi H; Uzuka T; Fujii Y Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():310-3. PubMed ID: 22254311 [TBL] [Abstract][Full Text] [Related]
12. [OMRON RF hyperthermia treatment system HEH-500 C]. Nakase Y Gan No Rinsho; 1986 Oct; 32(13):1638-43. PubMed ID: 3795483 [TBL] [Abstract][Full Text] [Related]
13. Radiofrequency capacitive heating of deep-seated tumours using pre-cooling of the subcutaneous tissues: results on thermometry in Dutch patients. van Rhoon GC; van der Zee J; Broekmeyer-Reurink MP; Visser AG; Reinhold HS Int J Hyperthermia; 1992; 8(6):843-54. PubMed ID: 1479209 [TBL] [Abstract][Full Text] [Related]
14. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. Kok HP; Navarro F; Strigari L; Cavagnaro M; Crezee J Int J Hyperthermia; 2018 Sep; 34(6):714-730. PubMed ID: 29509043 [TBL] [Abstract][Full Text] [Related]
15. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. Tsuda N; Kuroda K; Suzuki Y IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820 [TBL] [Abstract][Full Text] [Related]
16. Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: relationship between the radiofrequency-output power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients. Ohguri T; Yahara K; Moon SD; Yamaguchi S; Imada H; Terashima H; Korogi Y Int J Hyperthermia; 2011; 27(1):20-6. PubMed ID: 20858084 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Kok HP; Crezee J Int J Hyperthermia; 2017 Jun; 33(4):378-386. PubMed ID: 27951733 [TBL] [Abstract][Full Text] [Related]
18. [Temperature distribution and geometry of the electrodes in RF interstitial hyperthermia using circular and interstitial electrodes]. Kataoka M; Nishiyama Y; Fujii T; Kawamura M; Mogami H; Itoh H; Iio A; Hamamoto K Nihon Igaku Hoshasen Gakkai Zasshi; 1992 May; 52(5):646-52. PubMed ID: 1508637 [TBL] [Abstract][Full Text] [Related]
19. Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Abe M; Hiraoka M; Takahashi M; Egawa S; Matsuda C; Onoyama Y; Morita K; Kakehi M; Sugahara T Cancer; 1986 Oct; 58(8):1589-95. PubMed ID: 3756783 [TBL] [Abstract][Full Text] [Related]
20. A comparison of swine abdominal temperature distribution after heating with BSD-1000, an annular phased array system (APAS), and Thermotron RF-8. Tsukiyama I; Kajiura Y; Egawa S; Ishioka K; Nishimura K; Shida T Radiat Med; 1990; 8(6):250-5. PubMed ID: 2093947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]