These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39155250)
1. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
2. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
3. Research on an ankle rehabilitation robot for hemiplegic patients after stroke. Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474 [TBL] [Abstract][Full Text] [Related]
4. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot]. Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386 [TBL] [Abstract][Full Text] [Related]
5. Multi-mode adaptive control strategy for a lower limb rehabilitation robot. Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926 [TBL] [Abstract][Full Text] [Related]
6. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training. Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614 [TBL] [Abstract][Full Text] [Related]
7. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
8. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
9. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper. Zhu J; Hu H; Zhao W; Yang J; Ouyang Q Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548 [TBL] [Abstract][Full Text] [Related]
10. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot. Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X Front Robot AI; 2018; 5():116. PubMed ID: 33500995 [TBL] [Abstract][Full Text] [Related]
11. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model. Yao S; Zhuang Y; Li Z; Song R Front Neurorobot; 2018; 12():16. PubMed ID: 29692719 [TBL] [Abstract][Full Text] [Related]
12. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
13. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
14. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning. Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521 [TBL] [Abstract][Full Text] [Related]
15. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
16. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related]
17. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot. Li X; Yang Q; Song R IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619 [TBL] [Abstract][Full Text] [Related]
18. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field. Asl HJ; Narikiyo T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727 [TBL] [Abstract][Full Text] [Related]
19. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
20. Assistive Sliding Mode Control of a Rehabilitation Robot with Automatic Weight Adjustment. Hashemi A; McPhee J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4891-4896. PubMed ID: 34892305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]