These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 39155325)
1. PLMC: Language Model of Protein Sequences Enhances Protein Crystallization Prediction. Xiong D; U K; Sun J; Cribbs AP Interdiscip Sci; 2024 Dec; 16(4):802-813. PubMed ID: 39155325 [TBL] [Abstract][Full Text] [Related]
2. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection. Wang H; Wang M; Tan H; Li Y; Zhang Z; Song J PLoS One; 2014; 9(8):e105902. PubMed ID: 25148528 [TBL] [Abstract][Full Text] [Related]
3. Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features. Zhu YH; Hu J; Ge F; Li F; Song J; Zhang Y; Yu DJ Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32436937 [TBL] [Abstract][Full Text] [Related]
4. SADeepcry: a deep learning framework for protein crystallization propensity prediction using self-attention and auto-encoder networks. Wang S; Zhao H Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037090 [TBL] [Abstract][Full Text] [Related]
5. GCmapCrys: Integrating graph attention network with predicted contact map for multi-stage protein crystallization propensity prediction. Wang PH; Zhu YH; Yang X; Yu DJ Anal Biochem; 2023 Feb; 663():115020. PubMed ID: 36521558 [TBL] [Abstract][Full Text] [Related]
6. RFCRYS: sequence-based protein crystallization propensity prediction by means of random forest. Jahandideh S; Mahdavi A J Theor Biol; 2012 Aug; 306():115-9. PubMed ID: 22726810 [TBL] [Abstract][Full Text] [Related]
7. Crysalis: an integrated server for computational analysis and design of protein crystallization. Wang H; Feng L; Zhang Z; Webb GI; Lin D; Song J Sci Rep; 2016 Feb; 6():21383. PubMed ID: 26906024 [TBL] [Abstract][Full Text] [Related]
8. Survey of Predictors of Propensity for Protein Production and Crystallization with Application to Predict Resolution of Crystal Structures. Gao J; Wu Z; Hu G; Wang K; Song J; Joachimiak A; Kurgan L Curr Protein Pept Sci; 2018; 19(2):200-210. PubMed ID: 28933304 [TBL] [Abstract][Full Text] [Related]
9. TLCrys: Transfer Learning Based Method for Protein Crystallization Prediction. Jin C; Shi Z; Kang C; Lin K; Zhang H Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055158 [TBL] [Abstract][Full Text] [Related]
10. Sequence-Based Prediction of Transmembrane Protein Crystallization Propensity. Zhu Q; Wang L; Dai R; Zhang W; Tang W; Bin Y; Wang Z; Xia J Interdiscip Sci; 2021 Dec; 13(4):693-702. PubMed ID: 34143353 [TBL] [Abstract][Full Text] [Related]
11. SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence. Kandaswamy KK; Pugalenthi G; Suganthan PN; Gangal R Protein Pept Lett; 2010 Apr; 17(4):423-30. PubMed ID: 20044918 [TBL] [Abstract][Full Text] [Related]
12. Critical evaluation of bioinformatics tools for the prediction of protein crystallization propensity. Wang H; Feng L; Webb GI; Kurgan L; Song J; Lin D Brief Bioinform; 2018 Sep; 19(5):838-852. PubMed ID: 28334201 [TBL] [Abstract][Full Text] [Related]
13. Meta prediction of protein crystallization propensity. Mizianty MJ; Kurgan L Biochem Biophys Res Commun; 2009 Dec; 390(1):10-5. PubMed ID: 19755114 [TBL] [Abstract][Full Text] [Related]
14. Sequence-based prediction of protein crystallization, purification and production propensity. Mizianty MJ; Kurgan L Bioinformatics; 2011 Jul; 27(13):i24-33. PubMed ID: 21685077 [TBL] [Abstract][Full Text] [Related]
15. fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. Meng F; Wang C; Kurgan L BMC Bioinformatics; 2018 Jan; 18(1):580. PubMed ID: 29295714 [TBL] [Abstract][Full Text] [Related]
16. CrystalM: A Multi-View Fusion Approach for Protein Crystallization Prediction. Wang Y; Ding Y; Tang J; Dai Y; Guo F IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):325-335. PubMed ID: 31027046 [TBL] [Abstract][Full Text] [Related]
17. DeepCrystal: a deep learning framework for sequence-based protein crystallization prediction. Elbasir A; Moovarkumudalvan B; Kunji K; Kolatkar PR; Mall R; Bensmail H Bioinformatics; 2019 Jul; 35(13):2216-2225. PubMed ID: 30462171 [TBL] [Abstract][Full Text] [Related]
18. Protein-peptide binding residue prediction based on protein language models and cross-attention mechanism. Hu J; Chen KX; Rao B; Ni JY; Thafar MA; Albaradei S; Arif M Anal Biochem; 2024 Nov; 694():115637. PubMed ID: 39121938 [TBL] [Abstract][Full Text] [Related]
19. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy. Wei Q; Wang R; Jiang Y; Wei L; Sun Y; Geng J; Su R Comput Biol Med; 2023 Dec; 167():107631. PubMed ID: 37948966 [TBL] [Abstract][Full Text] [Related]
20. Prediction of protein crystallization using collocation of amino acid pairs. Chen K; Kurgan L; Rahbari M Biochem Biophys Res Commun; 2007 Apr; 355(3):764-9. PubMed ID: 17316561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]