These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39155940)
1. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. Oza U; Gohel B; Kumar P; Oza P Int J Biomed Imaging; 2024; 2024():9422083. PubMed ID: 39155940 [TBL] [Abstract][Full Text] [Related]
2. TrEnD: A transformer-based encoder-decoder model with adaptive patch embedding for mass segmentation in mammograms. Liu D; Wu B; Li C; Sun Z; Zhang N Med Phys; 2023 May; 50(5):2884-2899. PubMed ID: 36609788 [TBL] [Abstract][Full Text] [Related]
3. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
4. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network. Zhou Y; Wei J; Wu D; Zhang Y Front Oncol; 2022; 12():868257. PubMed ID: 35574397 [TBL] [Abstract][Full Text] [Related]
5. SAP-cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling. Li Y; Zhao G; Zhang Q; Lin Y; Wang M Med Phys; 2021 Mar; 48(3):1157-1167. PubMed ID: 33340125 [TBL] [Abstract][Full Text] [Related]
6. Digital mammography dataset for breast cancer diagnosis research (DMID) with breast mass segmentation analysis. Oza P; Oza U; Oza R; Sharma P; Patel S; Kumar P; Gohel B Biomed Eng Lett; 2024 Mar; 14(2):317-330. PubMed ID: 38374902 [No Abstract] [Full Text] [Related]
7. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images. Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784 [TBL] [Abstract][Full Text] [Related]
8. MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images. Balraj K; Ramteke M; Mittal S; Bhargava R; Rathore AS Sci Rep; 2024 Jun; 14(1):12699. PubMed ID: 38830932 [TBL] [Abstract][Full Text] [Related]
9. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images. Li GY; Chen J; Jang SI; Gong K; Li Q Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263 [TBL] [Abstract][Full Text] [Related]
10. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Su Y; Liu Q; Xie W; Hu P Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358 [TBL] [Abstract][Full Text] [Related]
11. Learning from adversarial medical images for X-ray breast mass segmentation. Shen T; Gou C; Wang FY; He Z; Chen W Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601 [TBL] [Abstract][Full Text] [Related]
12. Automatic quadriceps and patellae segmentation of MRI with cascaded U Cheng R; Crouzier M; Hug F; Tucker K; Juneau P; McCreedy E; Gandler W; McAuliffe MJ; Sheehan FT Med Phys; 2022 Jan; 49(1):443-460. PubMed ID: 34755359 [TBL] [Abstract][Full Text] [Related]
13. Multi-Level Swin Transformer Enabled Automatic Segmentation and Classification of Breast Metastases. Masood A; Naseem U; Kim J Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082574 [TBL] [Abstract][Full Text] [Related]
14. Mass segmentation for whole mammograms via attentive multi-task learning framework. Hou X; Bai Y; Xie Y; Li Y Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33882475 [TBL] [Abstract][Full Text] [Related]
15. A novel breast cancer detection architecture based on a CNN-CBR system for mammogram classification. Bouzar-Benlabiod L; Harrar K; Yamoun L; Khodja MY; Akhloufi MA Comput Biol Med; 2023 Sep; 163():107133. PubMed ID: 37327756 [TBL] [Abstract][Full Text] [Related]
16. FSE-Net: feature selection and enhancement network for mammogram classification. Liao C; Wen X; Qi S; Liu Y; Cao R Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37712226 [No Abstract] [Full Text] [Related]
17. Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer. Tekin E; Yazıcı Ç; Kusetogullari H; Tokat F; Yavariabdi A; Iheme LO; Çayır S; Bozaba E; Solmaz G; Darbaz B; Özsoy G; Ayaltı S; Kayhan CK; İnce Ü; Uzel B Sci Rep; 2023 Jan; 13(1):128. PubMed ID: 36599960 [TBL] [Abstract][Full Text] [Related]
18. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
19. Fully convolutional network for automated detection and diagnosis of mammographic masses. Kulkarni S; Rabidas R Multimed Tools Appl; 2023 May; ():1-22. PubMed ID: 37362703 [TBL] [Abstract][Full Text] [Related]
20. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images. Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]